
CRM Interface Administrator Guide
Version 14.1



Notices
Copyright © 2004–2022. Aurea Software, Inc. (“Aurea”). All Rights Reserved. These
materials and all Aurea products are copyrighted and all r ights are reserved by Aurea.

This document is proprietary and confidential to Aurea and is available only under
a valid non-disclosure agreement. No part of this document may be disclosed in
any manner to a third par ty without the prior written consent of Aurea. The information
in these materials is for informational purposes only and Aurea assumes no respon-
sibility for any errors that may appear therein. Aurea reserves the right to revise
this information and to make changes from time to time to the content hereof without
obligation of Aurea to notify any person of such revisions or changes.

You are hereby placed on notice that the software, its related technology and services
may be covered by one or more United States (“US”) and non-US patents. A listing
that associates patented and patent-pending products included in the software,
software updates, their related technology and services with one or more patent
numbers is available for you and the general public’s access at https://markings.ip-
dynamics.ai/esw/ (the “Patent Notice”) without charge. The association of products-
to-patent numbers at the Patent Notice may not be an exclusive listing of associa-
tions, and other unlisted patents or pending patents may also be associated with
the products. Likewise, the patents or pending patents may also be associated with
unlisted products. You agree to regularly review the products-to-patent number(s)
association at the Patent Notice to check for updates.

Aurea and Aurea Software are registered trademarks of Aurea Software, Inc. in the
United States and/or other countries. Additional Aurea trademarks, including regis-
tered trademarks, are available at: https://www.aurea.com/legal/trademarks/. Jive
is a registered trademark of Jive Software, Inc. in the United States and/or other
countries. Additional Jive trademarks, including registered trademarks, are available
at: https://www.jivesoftware.com/legal/.

Notices

https://markings.ipdynamics.ai/esw/
https://markings.ipdynamics.ai/esw/
https://www.aurea.com/legal/trademarks/
https://www.jivesoftware.com/legal/


Table of Contents

Preface............................................................................................................6
About this documentation.....................................................................................................................6

Notation conventions.............................................................................................................................6

Aurea global support.............................................................................................................................7

Chapter 1: Introduction................................................................................8
Architecture Overview & Brief Description..........................................................................................8

CRM.interface – Some Technical Details............................................................................................9

What's new.............................................................................................................................................9

Main differences between CRM.interface and update.seven interface..........................................11

Chapter 2: Installation................................................................................12
Setup Wizard.......................................................................................................................................12

Post installation steps.........................................................................................................................13

Configuration of CRM.interface..........................................................................................................14

Logging.................................................................................................................................................15

Chapter 3: Integration Hub........................................................................16
CRM.interface Integration Server......................................................................................................16

CRM.interface integration client.........................................................................................................18

The Synchronize Workflow......................................................................................................19

How to integrate with a 3rd party system which requires a login.........................................24

Logging......................................................................................................................................25

Invoking integration client via program call trigger................................................................25

Excursion-invoking CRM.interface via URL parameter.........................................................27

Chapter 4: XML Syntax Reference............................................................28
Commands...........................................................................................................................................28

Common Elements..............................................................................................................................68

Attributes..............................................................................................................................................78

Request Attributes....................................................................................................................78

Session attributes.....................................................................................................................79

Common Attributes...................................................................................................................85

Command attributes.................................................................................................................91

<cond> attributes....................................................................................................................102

<dictionary> attributes...........................................................................................................104



<getcat> attributes..................................................................................................................105

<getdoc> attributes.................................................................................................................105

<import> attributes.................................................................................................................107

<insert> attributes..................................................................................................................111

<link> attributes......................................................................................................................111

<metainfo> attributes.............................................................................................................112

<merge> attributes.................................................................................................................115

<putdoc> attributes.................................................................................................................117

<query> attributes..................................................................................................................118

<refresh> attributes................................................................................................................124

<row_export> and <row_import> attributes.........................................................................126

<sort> attributes.....................................................................................................................128

<sleep> attributes...................................................................................................................128

<status> attributes..................................................................................................................129

<table> attributes....................................................................................................................130

<transaction> attributes.........................................................................................................134

Other attributes.......................................................................................................................135

<mp> attributes.......................................................................................................................137

<xquery> attributes................................................................................................................138

Custom attributes...................................................................................................................139

Boolean attributes..................................................................................................................140

Field Attributes........................................................................................................................140

Catservice Attribute................................................................................................................142

Miscellaneous topics.........................................................................................................................143

Shadow User...........................................................................................................................143

Authentication.........................................................................................................................143

Impersonation.........................................................................................................................144

Referencing a list of fields.....................................................................................................145

Formatting Date and Time Values.........................................................................................145

Matchup...................................................................................................................................147

Working with "Threads"..........................................................................................................148

Working with transactions......................................................................................................149

Message Processing..............................................................................................................151

List of flags that control processing......................................................................................159

Returning record data............................................................................................................159

Document encryption.............................................................................................................159

Recommended settings.........................................................................................................160

Cursor Flags...........................................................................................................................160

mmFlags XML Schema data type.........................................................................................162

Chapter 5: Other Functions and features..............................................163
How to remove namespaces............................................................................................................163

Field output formats..........................................................................................................................164

FieldTypes and Categories...............................................................................................................165



Error codes........................................................................................................................................167



Preface
For details, see the following topics:

• About this documentation

• Notation conventions

• Aurea global support

About this documentation
This guide is par t of the documentation set for Aurea CRM.

Notation conventions
This document uses the following notation conventions:

MeaningConvention

Fixed-width font indicates code, path names, file names, envi-
ronment variable names, parameter names, command names,
machine names, URLs.

Fixed-width

Bold Fixed-width  font is used to indicate user input or to
emphasize cer tain lines of code.

Bold Fixed-
width

Italic Fixed-width font indicates a placeholder for which you
must supply a value.

Italic Fixed-width

Bold sans serif typeface indicates the names of graphic user
interface elements such as dialog boxes, buttons, and fields.

Bold Sans serif

In text, italic serif typeface indicates the first use of an impor-
tant term. The term is defined in the glossary.

Italic serif

Underlined text in command lines and parameter descriptions
indicate that you only have to enter the underlined part of the
command or parameter name. For example, if you use
the-LOGFILE parameter in a command, you only need to enter
-LOGF.

Underlined

Brackets enclose optional arguments.[ ]

Braces enclose two or more items. You can specify only one
of the enclosed items. Vertical bars represent OR separators.
For example, you can specify a or b or c.

{ a | b | c }

6AUREA CONFIDENTIAL

Preface



MeaningConvention

Three consecutive periods indicate that you can repeat the
immediately previous item. In code examples, they can be
horizontal or ver tical to indicate omissions.

...

An angle bracket between two menu items indicates that you
should choose an item from a menu. For example, the notation
File >  > Exit means: "Open the File menu and choose Exit."

Menu > Choice

Links to related information in other chapters or documents are
indicated using the >> symbol.

>>

Aurea global support
If you encounter a problem while using an Aurea product or require assistance with
downloading the software or upgrading a product release, please open a ticket on
Aurea Support Central. Preferably, search the ar ticles on the Aurea Knowledge
Base for solutions to your issues before opening a ticket.

Information about the support organization is available on Support Central. The
product documentation is available athttps://help.aurea.com/crm/#.

For information about purchasing an upgrade or professional services, contact your
account executive. If you do not know who your account executive is, or for other
queries, contact us through our website.

7AUREA CONFIDENTIAL

Preface

https://support.aurea.com/
https://support.acrm.aurea.com/hc/en-us
https://support.acrm.aurea.com/hc/en-us
https://help.aurea.com/crm/
http://go.aurea.com/contact-us
https://www.aurea.com


1
Introduction
This document gives an overview of the architecture of CRM.interface and contains
a full syntax reference for the interface XML file that holds the configuration.

This document does not cover the description of technologies such as XML or XSL/t,
for details. refer to the documentation of these technologies.

Please contact the Aurea support center for feedback on this document. This docu-
ment is published in the download section of the support area of https://support.au-
rea.com. You can also check for newer revisions.

Architecture Overview & Brief Description
CRM.interface allows access to Aurea CRM business logic and data via XML
messages.

Data can be exchanged bi-directionally with any application capable of passing XML
requests via HTTP. A powerful transformation engine based on XSL/t allows interface
to produce and process any given XML-based dialect.

CRM.interface is most commonly used for on-line integration of back- and front-end
systems such as ERP, DMS, e-commerce, product configuration and legacy applica-
tions.

Additionally CRM.interface acts as the groupware Server, which is a central par t of
the Aurea CRM connector product family and connectLive.

Figure 1:  Architecture Overview

Note:  As of Service Pack 1 CRM.interface not only can act as an integration server,
but also as an integration client and actively trigger interactions (e.g. sending http
messages) with 3rd party systems.

8AUREA CONFIDENTIAL

Chapter 1: Introduction

https://support.aurea.com
https://support.aurea.com


Note:  See topic Integration Hub on page 16 for fur ther details.

CRM.interface – Some Technical Details
CRM.interface is a plug-in in the Aurea.CRM server framework or CRM.interface is
part of the homogenized server platform of Aurea.CRM.

As such a plug-in CRM.interface lives in IIS (and not as Aurea CRM interface in a
special host application).

Figure 2: CRM.interface plug-in

Basically the behavior of CRM.interface is defined via two settings files – set-
tings.xml (which can be configured via the CRM.interface configuration tool) and
the mm.ini file holding some additional CRM.interface specific log settings.

• See also Configuration of CRM.interface for fur ther information

• See also Main differences between CRM.interface and update.seven interface on
page 11 for fur ther information.

What's new
Find out what's new here!

New features with Service Pack 2

Integration with 3rd party applications requiring a login

9AUREA CONFIDENTIAL

CRM.interface – Some Technical Details



While the initial release of the integration workflow only covered for simple integration
scenarios, where either no authentication is required or the 3rd party system (e.g.
web services) offers the possibility to pass along the credentials with every request,
it is now possible to integrate with an application that requires an explicit login.

See topic How to integrate with a 3rd party system which requires a login on page
24 for fur ther details.

New features with Service Pack 1

As of Service Pack 1 CRM.interface not only can act as an integration server, but
also as an integration client and actively trigger interactions (e.g. sending http
messages) with 3rd party systems.

See topic Integration Hub on page 16 for fur ther details.

New features with version 8.1.7.433

Enhancements of the "synchronize" workflow

As of version 8.1.7.433 and higher the "synchronize" workflow natively supports
exchanging messages with SOAP web services. You now can easily achieve inte-
grations with SOAP web services endpoints. For fur ther details see the topics
Workflow Execution steps and Workflow settings and parameters. .

Additionally it is now possible to globally active logging for all workflow activities –
see topic Logging on page 25 below.

Configuration of the technical user ("shadow user")

As of version 8.1.7.433 and higher the credentials (username and password) of the
technical user (also known as "shadow user") are not longer stored in the set-
tings.xml, but in an encrypted XML - users.xml. See topic Configuration of the
technical user, creation of users.xml for fur ther details.

Excursion_Synchronization of Contact Persons and Persons

As of this version it is possible to also synchronize person records in addition to
company and contact person records.

Note:  this feature required adoptions of forms.xml and syncml_mm2gw.xslt -
so make sure that you incorporate these changes into your existing style sheets
after installing the path. forms.xlm: <table tablename='Human'> is added to both
<form type='vevent'> and <form type='mmPerson'>.

Note: syncml_mm2gw.xslt: the Person template is extended to <xsl:template
match='syncml:Person|syncml:Human'>

10AUREA CONFIDENTIAL

Chapter 1: Introduction



Main differences between CRM.interface and
update.seven interface
Learn about the differences between CRM.interface and update.seven interface.

• The syntax of CRM.interface is fully compatible with the predecessor version
Aurea CRM interface (SP8).

• CRM.interface now lives in IIS and no longer in Aurea CRM http server (which is
no longer par t of the product).

• CRM.interface includes the groupware Server, which is essentially for
CRM.connector SE for Exchange and CRM.connector for Domino.

• CRM.interface is no longer a COM Object, therefore no registration of the
component is required and therefore you are no longer limited to 10 instances
(mmInterface1.dll to mmInterface9.dll) of interface.

• Aurea CRM http client has been substituted by the new CRM.interface integration
client.

• The dictionary is no longer used in Aurea CRM; instead the XML names are read
from the Aurea CRM data model (field "XML field name"). Therefore the <dictio-
nary /> command serves for informational purposes only.

11AUREA CONFIDENTIAL

Main differences between CRM.interface and update.seven interface



2
Installation
Learn how to install CRM.interface and configure it. You can also find the post
installation steps discussed here.

Setup Wizard
Aurea CRM software provides an installation wizard that guides you through the
installation of CRM.interface.

CRM.interface also can act as groupware server, which is the essential server
product for the CRM.connector products (CRM.connector SE for Exchange and
CRM.connector for Domino) and CRM.connectLive.

Check the system requirements on https://support.aurea.com for fur ther information
on supported environments.

The setup does not require any manual input.

Note:  If you are installing CRMinterface on a machine with under Windows 7 64Bit
and IIS 7.0 a warning message is displayed and you have to ensure that you enable
anonymous access in IIS.

During the course of the setup procedure an application pool (Aurea_CRM.interface)
and a vir tual directory in IIS is created.

If a matching Aurea CRM win installation is found, the database connection settings
are copied from this installation to the CRM.interface installation. If such an instal-
lation is not found you have to define manually the connection string to your Aurea
CRM database in the mmdb.ini.

Note:  By default the mmdb.ini is located in C:\Program Files\Aurea CRM\
CRMinterface BTB\web\system\sys.

Setup wizard welcome screen

12AUREA CONFIDENTIAL

Chapter 2: Installation

https://support.aurea.com


Once star ted, the wizard guides you during the installation process.

Post installation steps
Learn about the post installation steps.

Creating a data base connection

If Aurea.CRM win is installed on the same computer where you are installing
CRM.interface, setup has already copied the ..\sys directory to the Aurea CRM
web directory.

Otherwise you must copy the ..\sys directory manually for CRM.interface to work
or manually define the connection string in the mmdb.ini.

Note:  By default the mmdb.ini is located in C:\Program Files\Aurea CRM\ CR-
Minterface BTB\web\system\sys file.

Creating the Technical (Shadow) User in Aurea.CRM

You need to create the Technical ("Shadow") User in Aurea CRM. To run CRM.in-
terface you must map the technical user to a Rep of the type "Employee". Please
refer to the Aurea CRM win manual on how to create a user. By default this user is
the "WWW" user, but you can also change the user name of the technical user.

Also see Configuration of the technical user, creation of users.xml and Shadow
User on page 143 for fur ther information.

Enabling Friendly Error Messages During Login

Friendly error messages displayed by CRM.Interface during login allows users with
malicious intent to discern existing or valid users. Friendly error messages are dis-
abled by default. To enable this feature set the FriendlyLoginError option to 1 in
the settings.xml file, as shown in the sample below:
"FriendlyLoginError = 1"

13AUREA CONFIDENTIAL

Post installation steps



Configuration of CRM.interface
Learn about the CRM.interface configuration.

Configuration of the technical user, creation of users.xml

As of version 8.1.7.433 and higher the credentials (username and password) of the
technical user are stored in an encrypted XML file - users.xml. Use up-
date.Users.exe – which is installed in the \web\Bin subfolder of the installation
directory to create or modify the users.xml file.

Also see Creating the Technical (Shadow) User in Aurea.CRM and Shadow User
on page 143 for fur ther information.

Configuration of CRM.interface

CRM.interface can be configured using a configuration tool (update.Inter-
face.Configurator.exe), which is installed in the \tools folder of CRM.interface.

For all settings a help text is displayed in the "help pane" on the bottom.

Note: The configuration tool for CRM.interface supports creating and maintaining
parent-child configurations allowing to separate general configurations from (instance)
specific settings in scenarios, where multiple instances of CRM.interface are used.

Note:  CRM.interface itself does not yet support such hierarchical (parent-child)
configurations – this extension is planned for the future.

14AUREA CONFIDENTIAL

Chapter 2: Installation



Logging
Learn about logging in CRM.interface.

CRM.interface is a plugin in the Aurea.CRM server framework and is par t of the of
the homogenized server platform of Aurea.CRM. Basically the behavior of CRM.in-
terface is defined via two settings files:

• the settings.xml of the framework (\web), which holds the Aurea CRM server
specific settings and

• the CRM.interface-specific settings.xml (\web\system).

Additionally CRM.interface is influenced by the mm.ini file in \web\system\sys.

Consequently CRM.interface generates two log files:

1. All logging of Aurea CRM server (e.g. regarding loading and unloading of the
CRM.interface plug-in) is written to u8_iis_interface.log.

2. All logging about the actual processing of CRM.interface is written to u8_inter-
face.log.

Note:  See the Aurea WIKI ar ticles HOWTO Configure Logging for the Core and
HOWTO configure diagnostic logging for CRM.interface for more details.

15AUREA CONFIDENTIAL

Logging



3
Integration Hub
Learn about CRM.interface Integration hub client and server.

CRM.interface Integration Server
When CRM.interface acts as an integration server the process is initiated by the
particular client.

The external system triggers the process via sending an XML message over http(s).
This message is transformed and processed by CRM.interface, the response is
transformed into the XML dialect of the 3rd party system and sent to the External
System.

CRM.interface (server) – message flow

CRM.interface Test Client

The CRM.interface (and CRM.webservices test) client allows for testing CRM.inter-
face. The test client is installed into the \tools subfolder of the installation directory.

In the property pane you can basically define to which service endpoint the request
should be sent and which authentication mode you want to use.

16AUREA CONFIDENTIAL

Chapter 3: Integration Hub



Note:  the CRM.interface test client is provided "as-is". Some of the properties in
the Property Pane are for internal use only, e.g. the "RAS" settings in the security
hive.

In order to test CRM.interface with the test client set the value of the CRM.interface
Url to the Url of your interface endpoint and set the Request Target to "interface".

CRM.interface Test Client

Note:  In order to execute a XML request either press "Execute XML Request" or
F5.

Note: Tip: the test client allows for saving of XML requests (and responses) and
hence the execution of saved XML requests, which might be helpful, when testing
more complex requests.

Note:  Additionally it's possible to inser t "templates" for <query />, <import />
and <condition /> commands.

Loading, saving and executing XML requests with the test client

17AUREA CONFIDENTIAL

CRM.interface Integration Server



CRM.interface integration client
CRM.interface can also actively trigger the interaction with third-party systems, e.g.,
sending requests to an ERP system.

Note:  Excursion for readers familiar with update.seven: the integration client can
cover for the same scenarios in which update.seven HTTP client was used in the
past, but the new CRM.interface client is dramatically enhanced regarding
functionality and flexibility.

Invocation is done by sending specific http "get" messages to CRM.interface - based
on such a message a cer tain workflow is executed. The implementation of this
workflow is based on the Microsoft Workflow Foundation framework. Out-of-the-
box CRM.interface ships with one such predefined workflow, which is called "Syn-
chronize".

CRM.interface (client) – message flow

18AUREA CONFIDENTIAL

Chapter 3: Integration Hub



Although CRM.interface is agnostic as to which application invokes the integration
workflow (as long as the required parameters are provided) there is a built-in
mechanism in Aurea CRM allowing for invoking the integration workflow when data
is changed in Aurea CRM web (for example).

As shown in the figure above, when changing data in Aurea CRM web a program
call tr igger is fired; this http* trigger composes a http request which is sent to the
defined CRM.interface endpoint. For fur ther information about integration with client
see https://support.aurea.com

The Synchronize Workflow
Learn about the CRM web interface synchronization steps.

As stated above, CRM.interface currently ships with one out-of-the-box workflow.

Activities

This workflow is called "synchronize" and can -

• create and execute XML queries against Aurea CRM

• transform the XML query response to 3rd party system format

• exchange data with 3rd party system, either via Web Requests or SOAP messages

• transform the response from the 3rd party system into CRM.interface XML
messages

• create and modify data in Aurea CRM

The workflow is composed of the following activities:

• WorkflowSettings: This activity parses the incoming request for the settings
parameters and constructs a list of parameters, which are then used while

19AUREA CONFIDENTIAL

CRM.interface integration client

https://support.aurea.com


executing the workflow. See Workflow settings and parameters for fur ther details
on how this parameter list is constructed.

• ReadFile: This activity loads a file specified by its parameter FileName and returns
the content of this file. The “synchronize” workflow uses this activity to read query
template and transformation schema files.

• XslTransformer: This activity transforms XML using transformation schemata. The
“synchronize” workflow uses this activity for transforming CRM.interface XML
messages into 3rd party messages and vice versa.

• RestAPI: This activity sends data to an URL specified in the URL parameter. The
“synchronize” workflow uses this activity for communication with the particular
3rd party system.

• ProcessXml: This activity accesses Aurea CRM via CRM.interface. Basically this
activity is used for both retrieving data form Aurea CRM based on the provided
parameters in the invocation message as well as importing/updating data in Aurea
CRM based on the responses from the 3rd party system.

20AUREA CONFIDENTIAL

Chapter 3: Integration Hub



Workflow Execution steps

1. An invocation message with the name of the workflow and a list of parameters is
sent to CRM.interface.

2. The integration hub checks if the referenced workflow exists and after successful
compilation an HttpRequest object is passed to the workflow.

3. At this point the workflow star ts its sequence of activities:

a. If the invocation message contains the settings parameter the workflow opens
the referenced XML file and construct the list of specified parameters.

b. The workflow loads the query template file from the path specified in the query
parameter.

c. Placeholders in query template which are marked with {parameter name} (e.g.
{company_No}) are replaced by values provided in the URL (e.g. compa-
ny_No=15)

d. The XML query is executed against Aurea CRM (data is read).

e. If outTransformation is provided the workflow transforms the response from
CRM.interface using the transformation schema specified via the value of this
parameter. Otherwise the execution is continued with step 3.k on page 21.

f. If the useSoap parameter is set to true then the workflow continues with the
step 7 otherwise it jumps to step 8.

g. If useSoapTransformation is set to true then the workflow constructs the SOAP
message by applying the XSLT transformation defined in soapOutTranformation.
Otherwise it uses the XML template provided in the parameter soapTemplate
to generate the SOAP message.

h. The output of above transformation(s) is sent to the endpoint either defined by
the value of targetUrl or soapUrl. If useSoap is false or no soapAction is pro-
vided then the endpoint is the URL provided in targetUrl.

i. If the inTransformation parameter is provided, the workflow performs step 10,
otherwise the execution jumps to step 3.k on page 21.

j. The workflow transforms the response from the 3rd party system using the
transformation schema specified via the parameter inTransformation and sends
the output of the transformation to Aurea CRM

k. The workflow returns an execution output xml and ends its sequence.

Workflow settings and parameters

Parameters can either be provided directly in the URL or as an XML file (in this case
the URL has to contain the parameter settings with the name and path of that file).

Note: You can have multiple settings XML files for a single workflow.

Note:  For example, you can have one settings XML file for exchanging Opportunities
(e.g. y1_settings.xml) with the 3rd party system and another for exchanging
contact persons (e.g. kp_settings.xml).

21AUREA CONFIDENTIAL

CRM.interface integration client



If a parameter both is specified in the URL string and in the settings XML file, the
value defined in the URL string replaces the particular value of the settings file. If
a parameter is provided in the URL and is not found in the settings XML file, then
its value is added to the list of parameters. If a parameter is solely defined in the
settings XML file, its value is added to the list of parameters.

Note:  If you want to omit a parameter, which is defined in the settings XML file,
you have to omit the parameter settings in the URL and provide all required
parameters directly in the URL.

The following parameters are understood by the "synchronize" workflow

"synchronize" workflow parameters

22AUREA CONFIDENTIAL

Chapter 3: Integration Hub



MeaningParameter

Boolean indicator if the logging is on or off. This parameter
is optional.

loggingEnabled

Path to the query template XML filequery

Path to the XSLT file for transforming CRM.interface XML
into 3rd party system XML format.

Note:  if this parameter is not provided no message is sent
at all.

outTransformation

Path to the XSLT file for transforming 3rd party system
XML into CRM.interface format

inTransformation

if true SOAP messaging is used. Otherwise a (normal) Web
Request is sent to the 3rd party system.

useSoap

URL of 3rd par ty system.

A "normal" Web Request is sent to this URL if useSoap set
to false.

targetUrl

URL of the 3rd party web service.

A SOAP message is sent to this URL if useSoap set to true.

soapUrl

method of the 3rd party web service, which should be exe-
cuted.

If useSoap set to true, but no soapAction is provided then
a regular Web Request is sent to targetUrl as a fallback
solution.

soapAction

if true the SOAP message is created by applying the XSLT
stylesheet as defined in the parameter soapOutTranforma-
tion.

Otherwise the SOAP message is generated based on the
XML template as defined in the parameter soapTemplate.

useSoapTransforma-
tion

Path to XML template file used to create the SOAP mes-
sage.

If useSoapTransformation set to true this parameter is ig-
nored.

soapTemplate

Path to XSLT used to create the SOAP message.

Only used if useSoapTransformation is set to true.

soapOutTranformation

23AUREA CONFIDENTIAL

CRM.interface integration client



Note:  Support for SOAP messaging is available of version 8.1.7.433 and higher.

Note:  If relative file paths are used these paths have to be relative to the root
directory of the CRM.interface web application (and not relative to the location of
the workflow XAML file).

The settings file of the "synchronize" workflow has the following structure.

Settings file of workflow
<?xml version="1.0"?>
<settings>

<loggingEnabled></loggingEnabled> <!-- indicator if the logging is on or
off-->

<query></ query> <!-- path to the query template xml file -->
<outTransformation></ outTransformation> <!-- path to XSLT file responsible

for transformation from Aurea CRM format into 3rd party system format -->

<inTransformation></ inTransformation> <!-- path to XSLT file responsible for
transformation from 3rd party system into format Aurea CRM format -->

<targetUrl></ targetUrl> <!-- URL of 3rd party system-->
<useSoap></ useSoap> <!-- indicator if SOAP messaging will be used -->
<soapAction></ soapAction> <!-- method of the 3rd party web service to invoke

-->
<soapTemplate></ soapTemplate> <!-- XML template file used to create SOAP

message-->
<soapUrl></ soapUrl> <!-- URL of web service endpoint -->
<useSoapTransformation></ useSoapTransformation> <!-- indicator, if XSLT file

(soapOutTranformation) or XML template (soapTemplate) should be used -->
<soapOutTranformation></ soapOutTranformation> <!-- path to the XSLT file for

transforming from Aurea CRM format into SOAP message -->
</settings>

How to integrate with a 3rd party system which requires
a login
It is possible to integrate with 3rd party systems, which require an explicit login.

Note:  the "Cookie-Handling" functionality described below requires service pack 2
of CRM.interface.

In order to set up the integration with such a system you only need to add a second
instance of RestApi activity to your integration workflow. The first instance of RestApi
activity is responsible for making the "Login" into the 3rd party system and retrieving
the cookies. The second activity instance is responsible for exchanging the data
between the integration hub and the 3rd party endpoint.

Note:  For the communication with SOAP endpoints the workflow now supports a
new property Cookies. If the response header contains a Set-Cookie entry, its value
is assigned to the Cookies property of the activity. In order to share the cookie
between multiple activity instances, a workflow variable is used and assigned to the
property of each instance. This way the first call to the 3rd party service fills the

24AUREA CONFIDENTIAL

Chapter 3: Integration Hub



variable with the value from the response and each consecutive RestApi instance
sends it along with the request.

Note:  For non-SOAP communications the property HttpClient is used to store the
cookie. When this property is assigned to an instance of the HttpClient object with
CookieContainer, it is used to make the call to the 3rd party system. If this instance
of HttpClient is shared in similar fashion as described above (workflow variable
passed to each RestApi instance), cookies retrieved from the first call to the 3rd
party service is resent with every subsequent request.

Logging
Learn about logging of workflow activities.

Logging of workflow activities can be enabled or disabled via the parameter loggin-
gEnabled in the settings file. If <loggingEnabled>true</loggingEnabled> is set all
activities of the workflow are logged.

Invoking integration client via program call trigger
Learn how to invoice integration client via program call tr igger.

If you want to invoke CRM.interface client via Aurea CRM trigger you have to

• create a Program Call tr igger

• set Program Name to http*

• specify the endpoint in the first parameter (endpoint always means the full path
to the workflow which should be executed)

In the example below

• the endpoint of CRM.interface is MyServer/Interface_btb_81/workflows/synchro-
nize

• the settings are defined in the PE_settings.xml file

• four fields (FI_StatNo, FI_SerNo, PE_StatNo, PE_SerNo) of the actual data record
are passed as parameters to the workflow

Example of Program Call trigger (http* trigger)

25AUREA CONFIDENTIAL

CRM.interface integration client



The trigger in our example generates an invocation message which looks something
like that:

http://MYSERVER/Interface_btb_81/workflows/synchronize?settings=PE_set-

tings.xml&company_ StatNo=&company_No=15&person_StatNo=100&person_No=834

The PE_settings.xml in our example references a query template file which looks
something like that:

Example of a query template file
<?xml version='1.0'?>
<request>
<query maxrecords='100'>

<tables>
<table tablename='Company'>

<table tablename='Person' flags='256'/>
</table>
</tables>
<fields tablename='Company' fields='CoGrp,CoNo,Company,Country,FreeN1'/>
<fields tablename='Person' fields='Sex,LastName,FirstName,FreeN1'/>
<condition>

<cond tablename='Company' fieldname='CoGrp' op='=' value='{company_StatNo}'/>
<cond tablename='Company' fieldname='CoNo' op='=' value='{company_No}'/>
</condition>
<condition>

<cond tablename='Person' fieldname='PeGrp' op='=' value='{person_StatNo}'/>
<cond tablename='Person' fieldname='PeNo' op='=' value='{person_No}'/>
</condition>

</query>
</request>

The parameters provided in the invocation message are merged into the query
template file. During this merge the placeholders -which are marked with {parameter
name} (e.g. {company_No})- are replaced by the matching values.

In our example value='{company_No}' is replaced by value='15' (since the param-
eter provided in the invocation message is company_No=15).

26AUREA CONFIDENTIAL

Chapter 3: Integration Hub



Excursion-invoking CRM.interface via URL parameter
CRM.interface is agnostic as to which application invokes the integration workflow
(as long as the required parameters are provided).

In order to invoke the "synchronize" workflow the request needs to contain the fol-
lowing information

• Name of the workflow

• Name of the settings file (or alternatively the settings as URL parameters)

• Fields of the actual data record, which are used to read data from Aurea CRM
and prepare the outgoing message

For example, if you want to invoke CRM.interface client via a Button-click in Aurea
CRM web, you would just need to call CRM.interface via URL parameter.

27AUREA CONFIDENTIAL

CRM.interface integration client



4
XML Syntax Reference
List of XML syntax references

Structure of Requests

<request attributes>
<commands attributes />
</request>

Commands
List of action XML syntax reference.

<request>

The <request> element contains the definition of an interface XML request. It is the
root element of the document, and the whole document is defined to be namespace-
neutral. (Example, see How to remove namespaces on page 163).

<request/>

<request> </request>Appearance

ixslt log logmode noerrorlog oxslt

any Session Attribute

any Custom Attribute

Attributes

(Any command element)+Contents

(No parent elements - defines the top-level element)May occur in

Attributes on the <response> element that are not processed by
CRM.interface (i.e. that are not in the attributes list above) are
plainly copied to the <response> element of the XML response.
This allows for easy pass-through of key-value pairs that can for
example be used to connect the request to its corresponding re-
sponse via a unique id.

Remarks

<break>

The <break> command stops processing the request if the break condition is fulfilled.
Commands not already executed are left unprocessed.

28AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<break/>

<break> </break>Appearance

if transaction
any Custom Attribute

Attributes

(No child elements)Contents

< request >May occur in

noneRemarks

<?xml version="1.0"?>
<request xmlns:mp="http://www.update.com/xml/core/mp">

<import>
<fields>

<Company>
<Company matchup="true">break-dance</Company>
<UndefinedField>undefined field</UndefinedField>

</Company>
</fields>

</import>
<!-- break on error -->
<break if="/root/response/*[last()]//return[@type='error']"/>
<!-- otherwise, do further processing -->
<nop/>

</request>

In the example above the execution of the request is stopped if an error occurs
(<UndefinedField> doesn’t exist in Aurea CRM; therefore the <nop> command fol-
lowing the import command is not executed, see response below).

If you would resolve the error in the request, the break condition is no longer fulfilled
and the <nop> command would be executed.

<response xmlns:mp="http://www.update.com/xml/core/mp" xmlns="">
<import>
<return table="FI" id="0" type="error" func="C_Portal::ProcessImportNode">

<ecode>-10027</ecode>
<etext>Dictionary: Field not found</etext>
<table table="FI" tablename="Company"/>
<field>UndefinedField</field>

</return>
</import>

</response>

<debug>

The <debug> command is for internal purposes only. Do not use except when explic-
itly instructed to do so.

<delete>

The <delete> command allows for deletion of multiple records from a single table
(like in the Aurea CRM win service module).

29AUREA CONFIDENTIAL

Commands



<delete/>

<delete> </delete>Appearance

any Command Attribute

if

any Custom Attribute

Attributes

tables links? fields? condition? sor tlist? custom_sortlist?Contents

< request >May occur in

The <delete> command is executed as a <query> and the resulting
records are deleted.

Be sure that the set of records to be deleted are properly limited
by conditions and/or links, otherwise you might delete too many
or even all records in a table (including all its child records).

Remarks

<?xml version="1.0"?>
<request>

<delete>
<tables>

<table tablename="Company"/>
</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="="
value="delete-test*"/>

</condition>
</delete>

</request>

In the example above all company records that match the condition (Company star ts
with "delete-test") is deleted. The response returns the record id of each deleted
record.

<response>
<delete>

<return table="FI" tablename="Company" id="4294979919" type="delete"/>
<return table="FI" tablename="Company" id="4294979937" type="delete"/>
<!-- … -->

</delete>
</response>

In the example below person records that match the condition (LastName = "Maier")
within the linked company record (Company = "delete-test") is deleted.

30AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



The response is similar to the example before.
<?xml version="1.0"?>

<request>
<delete>

<tables>
<table tablename="Person"/>

</tables>
<condition>

<cond tablename="Person" fieldname="LastName" op="=" value="Maier"/>
</condition>
<links>

<Company>
<Company>delete-test</Company>

</Company>
</links>

</delete>
</request>

<dictionary>

Note: The dictionary is no longer used in Aurea CRM; instead the XML names are
read from the Aurea CRM data model (field "XML field name"). Therefore the <dic-
tionary /> command serves for informational purposes, only.

The <dictionary> command generates a new dictionary.xml in the \xml sub-
folder of the installation directory - an existing file is renamed to dictionary_YYYYM-
MDDhhmmss.xml.

31AUREA CONFIDENTIAL

Commands



<dictionary/>

<dictionary> </dictionary>Appearance

complete if transaction

any Custom Attribute

Attributes

(No child elements)Contents

<request>May occur in

Note:  Deprecated. The dictionary is no longer used in Aurea
CRM.

Remarks

MeaningAttribute

custom text is defined in the dictionarytext_class = CustomTexts

text is defined in data modeltext_class = CoreTexts

neither in the data model, nor in the dictionary a
custom text is defined, text is generated automatically
based on the field number

text_class = MissingTexts

<getcat>

The <getcat> command exports all values for a catalog. If the catalog is dependent,
the parent values are also generated.

<getcat/>

<getcat> </getcat>Appearance

extkey id include_locked_values if transaction

any Custom Attribute

Attributes

(No child elements)Contents

32AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<getcat/>

<request>May occur in

The <getcat> command returns the language-dependent catalog
texts. Fur thermore, sor t number and tenant are also included in
the response. If extkey='true', external keys are also returned.

The catalog can be given by number/name, catalog number or
the core catalog number.

Remarks

<?xml version="1.0"?>
<request>

<getcat tablename="Company" fieldname="Country"/>
</request>
<response>

<getcat tablename="Company" fieldname="Country">
<catalog index="2" ucatindex="-1">

<cat index="1" locked="false">Österreich</cat>
<cat index="2" locked="false">Deutschland</cat>
<cat index="3" locked="false">Schweiz</cat>

</catalog>
</getcat>

</response>

In this example the catalog texts of a dependent catalog is returned. Additionally
its respective parent catalog text is returned.

<?xml version="1.0"?>
<request>

<getcat tablename="ProblemResolution" fieldname="Product"/>
</request>
<response>

<getcat tablename="ProblemResolution" fieldname="Product">
<catalog index="28" ucatindex="29">

<ucat index="0" locked="false">
<cat1>Product Group 1</cat1>
<cat index="0" locked="false">Product 1-1</cat>

</ucat>
<ucat index="1" locked="false">

<cat1>Product Group 2</cat1>
<cat index="0" locked="false">Product 2-1</cat>
<cat index="1" locked="false">Product 2-2</cat>
<cat index="2" locked="false">Product 2-3</cat>

</ucat>
</catalog>

</getcat>
</response>

The example below illustrates request and response using extkey and id attribute.
<?xml version='1.0'?>

<request>
<getcat id='2' extkey='true' include_locked_values='true'/>
<getcat name='Firma-Frei 3'/>
<getcat table='IT' fieldname='Interest'/>

</request>
<?xml version='1.0'?>
<response>

<getcat id="2" extkey="true" include_locked_values="true">
<catalog id="2" cid="20000" name="Land">

<cat code="2" extkey="GER" value="Deutschland"/>
<cat code="1" extkey="AUT" value="Österreich"/>
<cat code="4" locked="true" mnr="69" sort="666" value="test"/>
<cat code="3" extkey="THA" value="Thailand"/>

</catalog>
</getcat>

33AUREA CONFIDENTIAL

Commands



<getcat name="Firma-Frei 3">
<catalog id="61" cid="20021" name="Firma-Frei 3">

<cat code="1" sort="1001" value="FI free3 1001"/>
</catalog>

</getcat>
<getcat table="IT" fieldname="Interest">

<catalog id="46" pid="45" cid="20035" name="Interesse">
<cat code="2" value="leer"/>
<cat code="1" value="test">

<cat code="1" value="test1"/>
<cat code="2" value="test2"/>
<cat code="3" value="test3"/>

</cat>
</catalog>

</getcat>
</response>

<getdoc>

The <getdoc> command reads documents from the D1 or D2 document tables and
embeds them base64-encoded in the response. XML documents can optionally be
embedded as inline XML.

<getdoc />

<getdoc> </getdoc>Appearance

decipher decrypt forceBase64 verify

any Command Attribute

if

any Custom Attribute

Attributes

tables links? fields? condition? sor tlist? custom_sortlist?Contents

<request>May occur in

The <getdoc> command is executed as a <query> and the result-
ing records are then processed as follows. If it is a document
record (D1 or D2), its document is used. Otherwise, all fields read
are interpreted as a document reference and the corresponding
document is used.

Remarks

In this example all records from D1 document table that match the condition are
read and the document itself is returned as base64-encoded string in the response.
The contents of the fields declared in the <fields> section is also returned.

To read documents from the D2 table use tablename="CustomerDocuments" instead
of "Documents".
<?xml version="1.0"?>

<request>
<getdoc>

<tables>
<table tablename="Documents"/>

</tables>
<fields>

<!-- Declare any additional fields to be read from D1 record -->

34AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<field tablename="Documents" fieldname="Keyword"/>
</fields>
<condition>

<cond tablename="Documents" fieldname="Name" op="=" value="test*"/>
</condition>

</getdoc>
</request>
<response>

<document table="D1" id="4294967495">
<docid>A1-199</docid>
<Name>test.txt</Name>
<ContentType>text/plain</ContentType>
<Size>4</Size>
<Keyword>example</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</document>
<document table="D1" id="4294967497">

<docid>A1-201</docid>
<Name>test2.txt</Name>
<ContentType>text/plain</ContentType>
<Size>4</Size>
<Keyword>example</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</document>

</response>

The base64-encoded document is within the rawdata element.The elements <docid>,
<Name>, <Size> and <ContentType> are returned by default.

In the next example below all contact records that match the condition (current date)
are read. The fields declared in the <fields> section are interpreted as a document
reference (e.g.: "A1-200", "K100-5") and the corresponding document is returned
as base64-encoded string in the response.
<?xml version="1.0"?>

<request>
<getdoc>

<tables>
<table tablename="Contact"/>

</tables>
<fields>

<field tablename="Contact" fieldname="Document1"/>
</fields>
<condition>

<cond tablename="Contact" fieldname="Date" op="=" value="$curDay"/>
</condition>

</getdoc>
</request>
If the field is empty the following error will be returned:
<response>

<getdoc>
<return table="MA" id="4295006414" type="error"

func="C_Portal::XmlProcessGetDocument">
<ecode>-10054</ecode>
<etext>Field is empty</etext>
<table>MA</table>
<field>Document1</field>

</return>
</getdoc>

</response>
If the field contains a wrong or not existing document reference the following

error will be returned:
<response>

<getdoc>
<return type="error" func="C_Portal::XmlProcessGetDocumentEx">

<ecode>-10055</ecode>
<etext>Document not found</etext>
<code>0</code>

35AUREA CONFIDENTIAL

Commands



<docid>wrongref</docid>
</return>

</getdoc>
</response>

<history>

The <history> command exports the record history (that is stored in the H0 table).

<history />

<history> </history>Appearance

any Command Attribute

any Custom Attribute

Attributes

tables links? fields? condition? sor tlist? custom_sortlist? histo-
ry_condition?

Contents

<request>May occur in

The <history> command is executed as a <query> with the result-
ing records being output with their history added.

The record history can also be output by reading the H0 table as
a dependent table.

Remarks

<request>
<query>

<tables>
<table tablename="Company">

<table tablename="History"/>
</table>

</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="update
software AG"/>

</condition>
<fields tablename="Company" fields="Company"/>
<fields tablename="History" fields="1"/>

</query>
<history>

<tables>
<table tablename="Company"/>

</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="update
software AG"/>

</condition>
</history>

</request>

In the query response detailed information is returned, whereas in the history re-
sponse the history information is generated in a "query result"-structure.
<response>

<query>
<Company table="FI" id="296352743952" recId="x0000004500000210">

<Company>update software AG</Company>
<history>

<revisions>

36AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<revision id="1">
<header version="7060" dm="67">

<date_time>2009-09-17T12:46:11.241</date_time>
<module id="11">XML</module>
<StatNo>69</StatNo>
<Flags name="ModuleFlags"/>
<UserId>6900002</UserId>
<mode value="2">update</mode>
<function value="0"/>
<Flags name="NulFlags">Mapping</Flags>
<Flags name="Flags">fields</Flags>
<internal len="122"/>

</header>
<fields>

<field id="0" fid="60" type="string" hdb_type="2"
hdb_len="8">prev</field>

<field id="1" fid="4011" type="date" hdb_type="15"
hdb_len="4">2009-09-17</field>

<field id="2" fid="4016" type="time_msec" hdb_type="19"
hdb_len="4">12:46:11.209</field>

<field id="3" fid="4203" type="unsigned_short" hdb_type="9"
hdb_len="2">69</field>

<field id="4" fid="4204" type="rep" hdb_type="21"
hdb_len="4">WWW</field>

<field id="5" fid="4205" type="static_catalog" hdb_type="6"
hdb_len="1">XML</field>

<field id="6" fid="4206" type="unsigned_int" hdb_type="11"
hdb_len="4">67108864</field>

</fields>
</revision>
<revision id="2">

<header version="7060" dm="67">
<date_time>2009-09-17T13:08:32.213</date_time>
<module id="11">XML</module>
<StatNo>69</StatNo>
<Flags name="ModuleFlags"/>
<UserId>6900002</UserId>
<mode value="2">update</mode>
<function value="0"/>
<Flags name="NulFlags">Mapping</Flags>
<Flags name="Flags">fields</Flags>
<internal len="92"/>

</header>
<fields>

<field id="0" fid="61" type="string" hdb_type="2"
hdb_len="8">prev</field>

<field id="1" fid="4016" type="time_msec" hdb_type="19"
hdb_len="4">13:08:32.198</field>

</fields>
</revision>

</revisions>
</history>

</Company>
</query>
<history>

<Company table="FI" id="296352743952" recId="x0000004500000210">
<FreeC1>prev</FreeC1>
<Upd>2009-09-17</Upd>
<UpdTime>12:46:11.209</UpdTime>
<x-UpdStatNo>69</x-UpdStatNo>
<x-UpdUserId>WWW</x-UpdUserId>
<x-UpdModule>XML</x-UpdModule>
<x-UpdFlag>67108864</x-UpdFlag>

</Company>
<Company table="FI" id="296352743952" recId="x0000004500000210">

<FreeC2>prev</FreeC2>
<UpdTime>13:08:32.198</UpdTime>

</Company>
</history>

</response>

37AUREA CONFIDENTIAL

Commands



<import>

The <import> command defines a write operation (inser t/update/match) over one
or more tables.

<import/>

<import> </import>Appearance

allow_deleted catnew force_update mode no_insert write_cur-
sor_flags

any Command Attribute

if

any Custom Attribute

Attributes

links? fieldsContents

<request>May occur in

See Matchup on page 147 and especially the note in the topic in-
ternal/external matchup.

Remarks

In this example two company records are imported into the database. The <import>
command considers the matchup logic (similar to the import module, see Matchup
on page 147). In case of the first company record in this example:

if matchup finds a company record with the imported external key, the record is
updated.

if no company with this key exists, the company is inser ted as a new record.
<?xml version="1.0"?>

<request>
<import>

<fields>
<Company>

<ExtSystem>External</ExtSystem>
<ExtKey>1508</ExtKey>
<Company>My Company 1</Company>
<Synonym>external</Synonym>
<!— any other fields from company -->

</Company>
<Company>

<Company>My Company 2</Company>
<Synonym>internal</Synonym>
<!— any other fields from company -->

</Company>
<!— any other company records-->

</fields>
</import>

</request>

The response returns the id of each imported record and the type of the write oper-
ation (inser t/update/match)
<response>

<import>
<return table="FI" tablename="Company" id="4294979917" type="update"/>

38AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<return table="FI" tablename="Company" id="4294979924" type="insert"/>
</import>

</response>

In the next example records from more tables is imported. One company with tow
Persons and one contact for the second person.
<request xml:lang="de">

<import>
<fields>

<Company>
<ExtSystem>SAP</ExtSystem>
<ExtKey>1508</ExtKey>
<Company>My Company</Company>
<Synonym>external</Synonym>
<!-- any other fields from company -->
<Person>

<FirstName>John</FirstName>
<LastName>Doe</LastName>
<!-- any other fields from person-->

</Person>
<Person>

<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
<!-- any other fields from person-->
<Contact>

<Contact>Telefon</Contact>
<Subject>Imported via CRM.interface</Subject>
<!-- any other fields from contact-->

</Contact>
<!-- any other contact records-->

</Person>
<!-- any other person records -->

</Company>
<!-- any other company records -->

</fields>
</import>

</request>
<response>

<import>
<return table="FI" tablename="Company" id="4294979917" type="update"/>
<return table="KP" tablename="Person" id="4294977462" type="insert">

<links>
<link table="FI" tablename="Company" id="4294979923" linkId="-1"/>

</links>
</return>
<return table="KP" tablename="Person" id="4294977463" type="insert">

<links>
<link table="FI" tablename="Company" id="4294979923" linkId="-1"/>

</links>
</return>
<return table="MA" tablename="Contact" id="4295044743" type="insert">

<links>
<link table="KP" tablename="Person" id="4294977463" linkId="-1"/>

</links>
</return>

</import>
</response>

In this example the company record declared in the <links> section is read and –
if found - set as the link record of the imported contact. The structure of the response
is the same shown as in the examples above.
<request xml:lang="de">

<import>
<fields>

<Contact>
<links>

<Company>
<ExtSystem>SAP</ExtSystem>
<ExtKey>1508</ExtKey>

39AUREA CONFIDENTIAL

Commands



</Company>
</links>
<Contact>Brief</Contact>
<Subject>Imported via CRM.interface</Subject>

</Contact>
</fields>

</import>
</request>

If the link record does not exist, the following error is returned:
<response>

<import>
<return type="error" func="C_Portal::ReadLinks">

<ecode>-10041</ecode>
<etext>Link record not found</etext>
<link>

<Company>
<ExtSystem>External</ExtSystem>
<ExtKey>1508</ExtKey>

</Company>
</link>
<code>0</code>

</return>
</import>

</response>

If more than one link record is found, the following error is returned:
<response>

<import>
<return type="error" func="C_Portal::ReadLinks">

<ecode>-10042</ecode>
<etext>Link record not unique</etext>
<link>

<Company>
<Company>Test</Company>

</Company>
</link>
<code>-2</code>

</return>
</import>

</response>

In order to be independent from default xml names within an <import/> request you
can also reference a field by its unique field id (attribute fid) and a table by its ab-
breviation (attribute table).
<import>

<fields>
<call table="KM">

<links>
<businesspartner table="FI">

<name fid="2">update software AG</name>
</businesspartner>

</links>
<key fid="88">ABC10000</key>
<parentcat fid="4">Software</parentcat>
<childcat fid="5">Call</childcat>
<owner fid="50">Alexander Jüttner</owner>
<owner2 fid="51">Christoph Macheiner</owner2>

</call>
</fields>

</import>

The above example is the equivalent to the following one (using the default syntax):
<import>

<fields>
<ProblemResolution>

<links>
<Company>

40AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<Company>update software AG</Company>
</ Company>

</links>
<No>ABC10000</No>
<ProblemGroup>

Software</ ProblemGroup>
<Problem>Call</Problem>
<ProcessedBy>Alexander Jüttner</ProcessedBy>
<CompletedBy>Christoph Macheiner</CompletedBy>

</ProblemResolution>
</fields>

</import>

<insert>

The <insert> command defines a write operation over one or more tables where
only inser t is permitted.

<insert/>

<insert> </ inser t >Appearance

allow_deleted catnew force_update mode no_insert write_cur-
sor_flags

any Command Attribute

if

any Custom Attribute

Attributes

links? fieldsContents

<request>May occur in

The <insert> command is executed as an <import> with matchup
disabled.

Remarks

<request>
<insert>

<fields>
<Company>

<Company>My Company 1</Company>
<Synonym>internal</Synonym>
<!— any other fields from company -->

</Company>
<Company>

<Company>My Company 2</Company>
<Synonym>internal</Synonym>
<!— any other fields from company -->

</Company>
<!— any other company records-->

</fields>
</ insert>

</request>

The only difference to the <import> command is that there is no matchup logic
considered. All records are inser ted as new records.
<response>

<insert>

41AUREA CONFIDENTIAL

Commands



<return table="FI" tablename="Company" id="4294979923" type="insert"/>
<return table="FI" tablename="Company" id="4294979924" type="insert"/>
</ insert >

</response>

<login>

The <login> command changes the current login user and/or language.

<login/>

<login> </login>Appearance

any Session Attribute

if transaction

any Custom Attribute

Attributes

(No child elements)Contents

<request>May occur in

The <login> command changes the cur-
rent active login user and/or language for
the remainder of the request. In contrast,
when credentials and/or language are
specified on any other command, they
are only used for that single command.
See also Shadow User on page 143.

CRM.interface uses a technical user – by
default the WWW user – to access Aurea
CRM if no login context is provided. Use
update.Users.exe – which is installed in
the installation of interface - to create or
modify the users.xml file. Because
users.xml contains the usernames and
passwords of a CRM user, it is highly
recommend to encrypt the contents of the
file via the option "Use Xml Encryption".

See also, Authentication on page 143 and
Impersonation on page 144.

Remarks

<request>
<login user="MyUser" pwd="secret_password"/>

</request>
If the login is successful the response returns information about the user,

the corresponding rep user and the login language.
<response>

<!-- … -->
<login user="MyUser">

<login userId="2">
<user>MyUser</user>
<rep repId="103944" grpId="105473">My Rep Name</rep>
<language>de</language>

</login>

42AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<language>ger (de/German) 0,1,deu</language>
</login>

</response>
If the password is incorrect, the following error is returned (code -17):
<response>

<login user="MyUser">
<return type="error" func="C_Portal::XmlDoLogin">

<ecode>-10043</ecode>
<etext>Login error</etext>
<code>-17</code>
<user>MyUser</user>
<language>0</language>

</return>
</login>

</response>

Note:  If the user does not exist the code = -13 is returned. For other error codes,
see the

list of errors
in the Appendix.

In this example the first <query> command is executed in the context of user
"MyUser" (declared at request element). The first <login> command changes the
context to user "User1". The next two <query> commands are executed in this user’s
context.

The two <query> commands after the second <login> command are then executed
in the context of user "User2".
<request user="MyUser" pwd="my_secret_password">

<query>
<!-- query 1 -->

</query>
<login user="User1" pwd="password1"/>
<query>

<!-- query 2 -->
</query>
<query>

<!-- query 3 -->
</query>
<login user="User2" pwd="password2"/>
<query>

<!-- query 4 -->
</query>
<query>

<!-- query 5 -->
</query>

</request>

<matchup>

The <matchup> command executes the internal or external matchup for the specified
record data.

43AUREA CONFIDENTIAL

Commands



<matchup/>

<matchup> </matchup>Appearance

any Command Attribute

if

any Custom Attribute

Attributes

match query ?Contents

<request>May occur in

see also Matchup on page 147.Remarks

For each matching record one <MatchupRecord> element is returned within the
<match> element, containing score, text and description.

When the internal matchup is used, score is always 100, text and description are
empty - in this case the record ID is returned as well.

When the external matchup is used, the information returned depends on the imple-
mentation.

In this example no explicit <query> command is specified in the request, so only the
Default-Reference of the matching records are returned.
<request>

<matchup>
<match>

<fields>
<Company>

<Company>update software</Company>
<Country>Österreich</Country>
<Street>Operngasse 17-21</Street>
<ZipCode>1040</ZipCode>

</Company>
</fields>

</match>
</matchup>

</request>
<response>

<matchup>
<match>

<MatchupRecord table="FI" tablename="Company" id="4294967300">
<Score>100.00</Score>
<Text1/>
<Text2/>

</MatchupRecord>
<MatchupRecord table="FI" tablename="Company" id="4294975546">

<Score>100.00</Score>
<Text1/>
<Text2/>

</MatchupRecord>
<MatchupRecord table="FI" tablename="Company" id="4294975547">

<Score>100.00</Score>
<Text1/>
<Text2/>

</MatchupRecord>
</match>
<query>

44AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<Company tableshort="FI" id="4294967300">
<x-mmDefaultReference>update software AG</x-mmDefaultReference>

</Company>
<Company tableshort="FI" id="4294975546">

<x-mmDefaultReference>update software Germany
GmbH</x-mmDefaultReference>

</Company>
<Company tableshort="FI" id="4294975547">

<x-mmDefaultReference>update software (Switzerland)
GmbH</x-mmDefaultReference>

</Company>
</query>

</matchup>
</response>
To read additional fields, specify a <query> after the <match>.
<request hello="world">

<matchup>
<match>

<fields>
<Company>

<Company>update software</Company>
<Country>Österreich</Country>
<Street>Operngasse 17-21</Street>
<ZipCode>1040</ZipCode>

</Company>
</fields>

</match>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,Synonym,Country"/>

</query>
</matchup>

</request>
<response hello="world">

<matchup>
<match>

<MatchupRecord table="FI" tablename="Company" id="4294967300">
<Score>100.00</Score>
<Text1/>
<Text2/>

</MatchupRecord>
<MatchupRecord table="FI" tablename="Company" id="4294975546">

<Score>100.00</Score>
<Text1/>
<Text2/>

</MatchupRecord>
<MatchupRecord table="FI" tablename="Company" id="4294975547">

<Score>100.00</Score>
<Text1/>
<Text2/>

</MatchupRecord>
</match>
<query>

<Company tableshort="FI" id="4294967300">
<Company>update software AG</Company>
<Synonym>update</Synonym>
<Country>Österreich</Country>

</Company>
<Company tableshort="FI" id="4294975546">

<Company>update software Germany GmbH</Company>
<Synonym> update</Synonym>
<Country>Deutschland</Country>

</Company>
<Company tableshort="FI" id="4294975547">

<Company>update software (Switzerland) GmbH</Company>
<Synonym>update</Synonym>
<Country>Schweiz</Country>

</Company>
</query>

45AUREA CONFIDENTIAL

Commands



</matchup>
</response>

<merge>

The <merge> request allows the merging of Company and Person records via
CRM.interface.

The merge mode defines what approach is taken to field-level conflict resolution
(meaning which record "wins" when individual field values are conflicting). In source
and target modes, the respective record’s field values always win. In timestamps
mode, the most up-to-date field value wins.

<merge/>

<merge> </merge>Appearance

table tablename mode verbose no_exec flag_ignore transaction

if

any Custom Attribute

Attributes

destination_record source_recordContents

<request>May occur in

The information needed to perform a merge is:

The type of record to be merged: Company or Person

The merge mode: source, destination or timestamps

A key identifying the source record (Record ID and External Keys
are supported)

A key identifying the destination* record

After the merge operation, the source record is deleted. The
"surviving" record is always identified as the destination record,
independently of the merge mode.

Remarks

In this example the source company record is identified via the external key (1234)
and is merged into the destination record (extkey=5678). The remaining company
contains the field values of the original source company. Existing child records of
the source company are moved to the destination company.
<request>

<merge tablename="Company" mode="source">
<source_record extsystem="External" extkey="1234"/>
<destination_record extsystem= "External" extkey="5678"/>

</merge>
</request>
<response>

<merge tablename="Company" mode="source"/>
</response>

46AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



To obtain more information about conflicts during the merge process, use the attribute
verbose = "true":
<request>

<merge tablename="Company" mode="source" verbose="true">
<source_record extsystem="External" extkey="1234"/>
<destination_record extsystem= "External" extkey="5678"/>

</merge>
</request>
<response>

<merge tablename="Company" mode="source" verbose="true">
<conflicts>

<conflict>
<link linkId="0" srcId="FI" srcName="Company" destId="FI"

destName="Company"/>
<record source="4294979927" destination="4294979928" duplicate="0"/>

<source_record>
<Company table="FI" recId="x0000000100003157">

<CoGrp>1</CoGrp>
<CoNo>12631</CoNo>
<Company>Source</Company>
<!-- … -->

</Company>
</source_record>
<destination_record>

<Company table="FI" recId="x0000000100003158">
<CoGrp>1</CoGrp>
<CoNo>12632</CoNo>
<Company>Destination</Company>
<!-- … -->

</Company>
</destination_record>

</conflict>
<conflict>

<link linkId="0" srcId="FI" srcName="Company" destId="PI"
destName="LeadStatus"/>

<record source="4017" destination="4018" duplicate="0"/>
<source_record>

<LeadStatus table="PI" recId="x0000000000000fb1">
<Date>2009-09-15</Date>
<RepID>000100002</RepID>
<CoGrp>1</CoGrp>
<CoNo>12631</CoNo>
<!-- … -->

</LeadStatus>
</source_record>
<destination_record>

<LeadStatus table="PI" recId="x0000000000000fb2">
<Date>2009-09-15</Date>
<RepID>000100002</RepID>
<CoGrp>1</CoGrp>
<CoNo>12632</CoNo>
<!-- … -->

</LeadStatus>
</destination_record>

</conflict>
</conflicts>
<results>

<result>
<FI typ="" src="4294979927" dst="4294979928" result="source"/>

</result>
<result>

<XF typ="child" src="454" result="relink"/>
</result>
<result>

<PI typ="child" src="4017" dst="4018" result="source"/>
</result>

</results>
</merge>

</response>

47AUREA CONFIDENTIAL

Commands



In this example the source person record is identified via the unique record ID
(4294967297) and is merged into the destination record (ID=4294967285). The re-
maining person contains the field values of the original destination person. Existing
child records of the source person are moved to the destination person.
<request>

<merge tablename="Person" mode="destination">
<source_record recId="4294967297"/>
<destination_record recId="4294967285"/>

</merge>
</request>
<response>

<merge tablename="Person" mode="destination"/>
</response>

<metainfo>

The <metainfo> command returns the Meta information of a table, such as the fields
of a table and their attributes and the indices of the table.

The response nodes <Flags name="FieldAttributes"> and <Flags name="FieldFor-
mat"> are primarily intended for the update support for error analysis.

<metainfo/>

<metainfo> </metainfo>Appearance

table tablename flags include fields mode transaction

if

any Custom Attribute

Attributes

(No child elements)Contents

<request>May occur in

noneRemarks

<request>
<metainfo tablename="Company"/>

</request>
<response>

<metainfo tablename="Company">
<Flags name="FieldAttributes">

<Flag name="InputHook" value="x00000001"/>
[...]

</Flags>
<Flags name="FieldFormat">

<Flag name="DigitGrouping" value="x00000001"/>
[...]

</Flags>
<Company index="4" id="FI" name="Firma" customname="" basename=""

dbname="FI" count="168">
<fields>

<CoGrp fid="0" fnr="0" name="FiGr." dbname="ID" type="S" len="4"
ilen="2" cat="0" ucat="-1" attr="x20000000" ofmt="x0" field_class="x1000"
text_class="x2000000"/>

<CoNo fid="1" fnr="1" name="FiNr." dbname="ID" type="L" len="9"
ilen="4" cat="0" ucat="-1" attr="x40000020" ofmt="x0" field_class="x1000"
text_class="x2000000"/>

48AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<Company fid="2" fnr="2" name="Firma" dbname="Firma" type="C"
len="120" ilen="240" cat="0" ucat="-1" attr="x1" ofmt="x0" field_class="x1000"
text_class="x2000000"/>

<Synonym fid="3" fnr="3" name="Synonym" dbname="Syno" type="C"
len="30" ilen="60" cat="0" ucat="-1" attr="x0" ofmt="x0" field_class="x1000"
text_class="x2000000"/>

<Division fid="4" fnr="4" name="Division" dbname="Division" type="C"
len="40" ilen="80" cat="0" ucat="-1" attr="x0" ofmt="x0" field_class="x1000"

text_class="x2000000"/>
<Country fid="5" fnr="5" name="Land" dbname="Land" type="K" len="80"

ilen="2" cat="2" ucat="-1" attr="x1" ofmt="x0" field_class="x1000"
text_class="x2000000"/>

</fields>
[...]
<indexes>

<index id="1" type="p" autonumbered="1">
<field fid="0" fnr="0" name="CoGrp" type="S" len="4" ilen="2"

cat="0" ucat="-1" attr="x20000000" ofmt="x0" field_class="x1000"
text_class="x2000000"/>

<field fid="1" fnr="1" name="CoNo" type="L" len="9" ilen="4" cat="0"
ucat="-1" attr="x40000020" ofmt="x0" field_class="x1000" text_class="x2000000"/>

</index>
[...]

</indexes>
</Company>

</metainfo>
</response>

MeaningAttribute

Unique ID of field in Aurea CRMfid

Zero based index of field in data basefnr

Field name (output in current language)name

Column name of database tabledbname

See Field types.type

Maximum input / output lengthlen

Internal length in bytes, e.g. if type = L and ilen = 8 then it is a 64Bit
integer, if ilen=4 then it is a 32 bit integer

ilen

Catalog numbercat

Parent catalog number, if catalog is a dependent catalogucat

Field attributes, see list in appendix Field Attributes.attr

Field output format attributes, see list in appendix Field output formats.ofmt

Origin of language dependent fieldname, see list in appendix FieldTypes
and Categories.

Text_class

49AUREA CONFIDENTIAL

Commands



MeaningAttribute

IDs for tables and fieldscid

IDs for catalog fieldsccat

IDs for core fields. If core=all, the values for all ver ticals are returned,
if core='bb,bc', only the values for the BTB and OTC verticals are re-
turned.

core

<mp>

The <mp> command facilitates generation of arbitrary XML content.

<mp/>

<mp> </mp>Appearance

if output test transaction

any Custom Attribute

Attributes

(Any Content)Contents

<request>May occur in

See Message Processing.Remarks

<nop>

The <nop> command allows testing if interface is "up and running" – in case of suc-
cess the request does not return any data and therefore it is the easiest method of
testing.

<nop/>

<nop> </nop>Appearance

if transaction

any Custom Attribute

Attributes

(No child elements)Contents

50AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<nop/>

<request>May occur in

noneRemarks

<request>
<nop/>

</request>
<response>

<nop/>
</response>
In principle, no command is needed for the "up and running" test. However,

then the following error is returned:
<request/>
<response>

<return type="error" func="C_Portal::ProcessXml">
<ecode>-10049</ecode>
<etext>No command found in document</etext>

</return>
</response>

<putdoc>

The <putdoc> command imports documents into the document tables D1 or D2.

<putdoc/>

<putdoc> </ putdoc >Appearance

if transaction

any Custom Attribute

Attributes

links? rawdata? xmldata? filedata?Contents

<request>May occur in

The document itself can either be specified as BASE64 encoded
blob or read from a file (based on file name).

Remarks

In this example a text file is imported into the D1 table.

The document itself is provided as a base64-encoded string within the <rawdata>
element. The fields <Name> and <Keyword> are mandatory.

The response returns the document reference (A…for Documents from D1).
<request>

<putdoc>
<Name>Testdatei.txt</Name>
<Keyword>Putdoc_Test</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>

</request>
<response>

<!-- -->

51AUREA CONFIDENTIAL

Commands



<putdoc>
<docid>A1-333</docid>

</putdoc>
</response>

In order to import additional field values into the document record as well, you have
to add an <import> command after the <putdoc> command to update the record
created by the <putdoc> command.

<request>
<putdoc>

<Name>Testdatei.txt</Name>
<Keyword>Putdoc_Test</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>
<import>

<fields>
<Documents>

<links>
<link tablename="Documents" id="$lastRecId"/>

</links>
<Private>false</Private>
<DocClass>Textfile</DocClass>
<Owner>Own RepName</Owner>
<FreeC1>Test</FreeC1>
<!-- … -->

</Documents>
</fields>

</import>
</request>

In this example a text file is imported into the D1 table (<putdoc>). The following
<import> command creates a document link record (D3) linked to this D1 record
and to the company declared in the <links> section (if the company record exists
and is unique).

<request>
<putdoc>

<Name>Testdatei.txt</Name>
<Keyword>Putdoc_Test</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>
<import>

<fields>
<DocumentLink>

<links>
<Company>

<Company>My PutDoc Company</Company>
</Company>
<link tablename="Documents" id="$lastRecId"/>

</links>
</DocumentLink>

</fields>
</import>

</request>

<response>
<putdoc>

<docid>A1-335</docid>
</putdoc>
<import>
<return table="D3" tablename="DocumentLink" id="4294967737" type="insert">

<links>
<link table="FI" id="4294979928" linkId="-1"/>

<link table="D1" tablename="Documents" id="4294967631" linkId="-1"/>

</links>

52AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



</return>
</import>

</response>

XML documents need not be base64-encoded, they can be embedded as inline XML
(element <xmldata>).

<request>
<putdoc>

<Name>HelloWorld.xml</Name>
<Keyword>Putdoc_Test</Keyword>
<xmldata>

<root>
<hello attr="true">world</hello>

</root>
</xmldata>

</putdoc>
</request>
<response>

<putdoc>
<docid>A1-336</docid>

</putdoc>
</response>

In order to import documents directly from file system, use <filedata>. In this case
no other elements are needed in the request:

<request>
<putdoc>

<filedata>C:\MyFiles\Textfile.txt</filedata>
</putdoc>

</request>
<response>

<putdoc>
<docid>A1-338</docid>

</putdoc>
</response>

This request combines elements of the <query> and the <putdoc> commands:

With the definitions provided in the <tables> and <condition> elements a query for
companies is executed. Afterwards the document is imported into the D2 table as
a child record of the company record found by the query.

The document itself is provided as a base64-encoded string within the <rawdata>
element. The fields <Name> and <Keyword> are mandatory.

The response returns the document reference (K…for CustomerDocuments)
<request>

<putdoc>
<tables>

<table tablename="Company"/>
</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="My Putdoc
Company"/>

</condition>
<Name>Testdatei.txt</Name>
<Keyword>Putdoc_Test</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>

</request>
<response>

<putdoc>
<docid>K1-131</docid>

</putdoc>
</response>

Example <putdoc> - Import documents into the D2 document table

53AUREA CONFIDENTIAL

Commands



Note: The result of the query has to be just one unique record.

If no record is found, this request is equivalent to the request from the example in
Error! Reference source not found. and only the document is imported into the D1
table.

If more than one record is found, the following error is returned:
<response>

<putdoc>
<return type="error" func="C_Portal::XmlProcessPutDocument">

<ecode>-10042</ecode>
<etext>Link record not unique</etext>
<table>FI</table>

</return>
</putdoc>

</response>

Example <putdoc> - Response, if link record is not unique

In addition to the example before, this request contains the <doclinks> element:
<request>

<putdoc>
<tables>

<table tablename="Company"/>
</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="My Putdoc
Company"/>

</condition>
<doclinks>

<field tablename="Contact" fieldname="Document1" id="4294967631"/>
</doclinks>
<Name>Testdatei.txt</Name>
<Keyword>Putdoc_Test</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>

</request>
<response>

<!-- … -->
<putdoc>

<docid>K1-133</docid>
<doclinks>

<doclink tablename="Contact" fieldname="Document1" id="4295044745"/>
</doclinks>

</putdoc>
</response>

A record from a declared table (@tablename) is referenced by its record ID (@id).
The document reference of the imported document is written into the declared field
(@fieldname) of this record.

In this example: The text file is imported to the D2 table as a child of the company
"My Putdoc Company". The contact record with record ID 4294967631 is read and
the document reference (K1-133) is written into the field Document1 of this contact.

Note:  Normally the record ID is specified by a variable ($lastRecId). e.g.: from a
preceding <query> command.

If the record declared in the <doclinks> element does not exist, the following error
is returned:

<response>
<!-- … -->

54AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<putdoc>
<docid>K1-134</docid>
<doclinks>

<return table="MA" id="4295044746" type="error"
func="C_Portal::WriteRecord">

<ecode>-10004</ecode>
<etext>Cannot create cursor</etext>
<cursorid>-30</cursorid>
<recordid>4295044746</recordid>
<type>write</type>

</return>
</doclinks>

</putdoc>
</response>

In order to update an existing D1 document via <putdoc> you explicitly have to read
the document via <links>, since <putdoc> doesn’t provide a matchup-mechanism.

<request hello="world">
<putdoc>

<links>
<Documents>

<StatNo>10</StatNo>
<SeqNo>19262</SeqNo>

</Documents>
</links>
<Name>test3.txt</Name>
<Keyword>D1_Update_12484</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>

</request>

In order to update an existing D2 document via <putdoc> you explicitly have to read
the document via <links>, since <putdoc> doesn’t provide a matchup-mechanism.
Additionally you have to specify the company/person context, because without this
context a new D1 document would be created instead updating the existing D2
document.

<request>
<putdoc>

<tables>
<table tablename="Person"/>

</tables>
<condition>
<cond tablename="Person" fieldname="LastName" op="=" value="Hofmann"/>

</condition>
<links>

<CustomerDocuments>
<StatNo>1</StatNo>
<SeqNo>128</SeqNo>

</CustomerDocuments>
</links>
<Name>test3.txt</Name>
<Keyword>D2_Update_12485</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>

</request>

<query>

The <query> command defines a read operation over one or more tables.

55AUREA CONFIDENTIAL

Commands



<query/>

<query> </query>Appearance

labels maxrecords reverse select skiprecords lenient_filter chun-
ked

The following attributes are solely valid, if chunked = "true".

back chunk_size clear hardcache navigable

offset page qid

any Command Attribute

if

any Custom Attribute

Attributes

tables links? fields? condition? sor tlist? custom_sortlist?Contents

<request>May occur in

noneRemarks

In this example all company records are returned that match the declared condition
(field Company star ts with "My Company"). The values of the fields declared are
returned in the response.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,Synonym"/>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="My
Company*"/>

</condition>
</query>

</request>
<response>

<query>
<Company tableshort="FI" id="4294967394">

<Company>My Company 1</Company>
<Synonym/>

</Company>
<Company tableshort="FI" id="4294967399">

<Company>My Company 2</Company>
<Synonym>my</Synonym>

</Company>
<!-- any other company records -->

</query>
</response>

In this example all company records are returned that match the declared condition
for company table (Company star ts with "My Company") and within each Company
all person records that match the condition for person table (LastName star ts with
"M").

56AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



Note:  Normally in the <tables> section the dependency of the tables is declared.
Only one root table is possible.

It is not possible to mix conditions from different tables within one <condition>
section. If desired for each table a separate condition section has to be declared.

<request>
<query>

<tables>
<table tablename="Company">

<table tablename="Person"/>
</table>

</tables>
<fields>

<field tablename="Company" fieldname="CoGrp"/>
<field tablename="Company" fieldname="CoNo"/>
<field tablename="Company" fieldname="Company"/>
<field tablename="Person" fieldname="LastName"/>
<field tablename="Person" fieldname="FirstName"/>

</fields>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="My
Company*"/>

</condition>
<condition>

<cond tablename="Person" fieldname="LastName" op="=" value="M*"/>
</condition>

</query>
</request>
<response>

<query>
<Company tableshort="FI" id="4294975508">

<CoGrp>1</CoGrp>
<CoNo>8212</CoNo>
<Company>My Company 1</Company>

</Company>
<Company tableshort="FI" id="4294979923">

<CoGrp>1</CoGrp>
<CoNo>12627</CoNo>
<Company>My Company 2</Company>
<Person tableshort="KP" id="4294977464">

<LastName>Maier</LastName>
<FirstName>Sabine</FirstName>

</Person>
<Person tableshort="KP" id="4294977464">

<LastName>Mader</LastName>
<FirstName>Georg</FirstName>

</Person>
<!— any other person records within this company -->

</Company>
<!— any other company records -->

</query>
</response>

In the example below we have a filter condition which causes a conversion error
(<etext>Conversion error</etext>) because the condition compares a numeric field
fieldname="FreeN1" with an alphanumeric value (value="update").

<request>
<query maxrecords="5">

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="1,2,3,4,5,6,7"/>
<condition>

<cond tablename="Company" fieldname="FreeN1" op="!=" value="update"/>

</condition>
</query>

57AUREA CONFIDENTIAL

Commands



</request>
<response>

<query maxrecords="5">
<return type="error" func="C_Portal::CheckField">

<ecode>-10023</ecode>
<etext>Conversion error</etext>
<field table="FI" tablename="Company" fid="63" fnr="63" type="L"

fieldname="FreeN1"/>
<description>parse error</description>
<value/>

</return>
</query>

</response>

In the example below we use lenient_filter="true" and therefore the incorrect
condition fieldname="FreeN1" is ignored and only the condition on fieldname="Com-
pany" is executed.

<request>
<query maxrecords="5" lenient_filter="true">

<tables>
<table tablename="Company" />

</tables>
<fields tablename="Company" fields="2"/>
<condition>

<cond tablename="Company" fieldname="FreeN1" op="!=" value="update"/>

<lop op="and"/>
<cond tablename="Company" fieldname="Company" op="()" value="update"/>

</condition>
</query>

</request>

Chunked read

Reading in chunks allows for more efficient retrieving of (possible) huge data sets
and navigating in these data sets. First only the record-IDs are read (up to
maxrecords). Subsequent queries return the next "page" (determined by chunk_size)
of records by referencing the original query via a query-ID (qid).

In the example below the data two chunks of 10 records are read.
<request>

<query maxrecords="50" qid="query_chunked_FI.xml" chunked="true"
chunk_size="10">

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="CoGrp,CoNo,Company,Country"/>

</query>
</request>
<request>

<query qid="query_chunked_FI.xml"/>
</request>

If you don’t specify a qid in the requests, interface generates a unique qid to be
used in the following queries.

<request>
<query maxrecords="50" chunked="true" chunk_size="10">

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="CoGrp,CoNo,Company,Country"/>

</query>
</request>
<response>

<query maxrecords="50" chunked="true" chunk_size="10"
qid="QVRQQzI1ODJfdXBkYXRlLndlYi5zZXJ2aWNlcy50ZXN0LmV4ZV9fMjAxMi
0xMC0xNiAxMzowNjoxMS44NzNfNjkwMTg5MDMwX1A3Njg4X1Q4NzYwXykjPmFsVi5SSXE="count="50">

58AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



…
</response>

In order to read the next page you have to do something like in the request shown
below.

<request>
<query qid="QVRQQzI1ODJfdXBkYXRlLndlYi5zZXJ2aWNlcy50ZXN0LmV4ZV9fMjAxM

i0xMC0xNiAxMzowNjoxMS44NzNfNjkwMTg5MDMwX1A3Njg4X1Q4NzYwXykjPmFsVi5SSXE="/>
</request>

chunk_size can be set on every query; if not set explicitly on the "following" queries,
the last value of is chunk_size used.

If navigable = true is not specified the initial list of record-IDs is reduced by the
records returned by each query. The last chunk of data is marked with
last_chunk="true". If all records have been read "Query already completed" is re-
turned.

<response>
<query qid="query_chunked_FI.xml" chunk_size="10" count="50"

last_chunk="true">
<query qid="query_chunked_FI.xml">

<return type="error" func="C_Portal::XmlExecuteQueryChunked">
<ecode>-10090</ecode>
<etext>Chunked read error</etext>
<description>Query already completed</description>

</return>
</query>

</response>

If navigable = true the record-IDs are kept at the server until the timeout is reached
(timeout = 60 minutes after last use); by default navigation direction is forward,
unless back=true. The star ting point of the navigation can be set via the offset or
page attribute.

count returns the total number of records (  maxrecords) from the initial query; if
navigable = true the current offset is returned in the pos attribute.

<refresh>

The <refresh> command refreshes the Aurea CRM internal caches (e.g. format
cache, catalogue cache, rep cache). Please note, that the refresh request requires
SU user privileges.

<refresh/>

<refresh> </refresh>Appearance

catalogs configuration formats protocols reps transaction

if

any Custom Attribute

Attributes

(No child elements)Contents

59AUREA CONFIDENTIAL

Commands



<refresh/>

<request>May occur in

noneRemarks

<request user="SU" pwd="__SUPWD">
<refresh/>

</request>
<response user="SU">

<refresh/>
</response>

<row_export>

The <row_export> command allows for exporting data through the use of an export
format, its functionality is equivalent to the Aurea CRM export module. Currently,
the exported data cannot be returned in the XML response (it can only be written
to the export file).

<row_export/>

<row_export> </row_export>Appearance

debug format_name output_fileAttributes

(No child elements)Contents

<request>May occur in

Remarks

<row_import>

The <row_import>  command allows for importing data through the use of an import
format, its functionality is equivalent to the Aurea CRM import module. Import data
can be specified using a file, or as XML using a single <data> block or split into
multiple "lines" using <rows> with <row> sub-nodes.

<row_import />

<row_import> </row_import>Appearance

debug format_name input_file record_separator field_separator
boundary_separator

Attributes

rows/row dataContents

60AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<row_import />

<request>May occur in

The response <r> of the <row_import> command includes infor-
mation about what happened with the data record.

<r ipos=[integer] irelpos=[integer] status=[integer] table=[string]
id=[long integer]/>

iposhierarchical position,

0 = root table,

1=child table first level,

2=child table second level

…

irelpos hierarchical position of the table if imported multiple times

status0 = not processed, e.g. if no data record for this table is
included in the import data

1 = record is matched

2 = record is inser ted

4 = record is changed

8 = record is deleted

16 = record is rejected due to an error

32 = similar records are found

64 = matchup logic has been aborted with no success (example:
primary key is specified, and the record is not found)

128 = record went through manual matchup (not possible in non-
interactive scenarios like u7.interface)

256 = match via external key

The response <e> of the <row_import> command includes detailed
information about import errors for each row, the concerned field
is fur ther detailed in the <field> element.

<e rc=[integer]> where rc references the row in which the error
occurred

<field table=[string] tablename=[string] fid=[integer] fnr=[integer]
type=[string] fieldname==[string]/>

The response <msg> provides an error message.

Remarks

In the example below all attribute definitions (fields, separator, data …) are taken
from the Aurea CRM import format.

<request>
<row_import format_name=" Import format Company"/>

</request>

61AUREA CONFIDENTIAL

Commands



In the example below the input file definition of the Aurea CRM import format is
overwritten by the request. Path can be absolute or – as defined in this example
via using the $ syntax – relative to the installation directory of CRM.interface.

<request>
<row_import format_name=" Import format Company"

input_file="$\Documents\import_companies.txt"/>
</request>

The example below illustrates how to override the separators defined in the Aurea
CRM import format via the <row_import> request. Please note that you have to es-
cape the separators according to the XML language definition ("&#10;" is equivalent
to Lf). The separator settings are equivalent to the definition in the Aurea CRM format
as depictured below.

<request>
<row_import format_name=" Importformat Firmen"

input_file="$\Documents\import_firmen.txt" record_separator="&#10;"
field_separator=";" boundary_separator=","/>

</request>

The example below illustrates how data can be passed to the <row_import> request
directly. In this case you have to overwrite the data source defined in the Aurea.CRM
format via input_file="".

If data is defined in a CDATA section you can send un-escaped data (e.g. you do
not need to escape special characters with "&"). Otherwise you have to ensure that
the data is in valid XML format.

<request>
<row_import format_name="Importformat CompanyPerson" input_file=""

record_separator="&#10;" field_separator=";">
<!-- empty @input_file because we have one in the format-->
<rows>

<row>Test AG;1020;Wien;Hauptstrasse 68;782612;Joe;Doe</row>
<row>Test AG;1020;Wien;Hauptstrasse 68;782612;Tom;Tester</row>
<row><![CDATA[ Test & Co GmbH;2340;Mödling;Einbahnstrasse

77;32145]]></row>
</rows>

</row_import>
</request>

62AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



The next example executes basically the same import request as in example for
<row_import> - import data in request, but now all data is wrapped into one <data>
element.

<request>
<row_import format_name=" Importformat CompanyPerson" input_file=""

record_separator=";" field_separator=",">
<!-- empty @input_file because we have one in the format-->
<data>Test AG,1020,Wien,Hauptstrasse 68,782612,Joe,Doe;Test

AG,1020,Wien,Hauptstrasse68,782612,Tom,Tester;TestGmbH,2340,Mödling,Einbahnstrasse
77,32145</data>

</row_import>
</request>

In the next example all data is wrapped into one CDATA section.
<request>

<row_import format_name="Importformat CompanyPerson" input_file=""
record_separator=";" field_separator=",">

<!-- empty @input_file because we have one in the format-->
<data><![CDATA[Test AG,1020,Wien,Hauptstrasse 68,782612,Joe,Doe;Test

AG,1020,Wien,Hauptstrasse 68,782612,Tom,Tester;Test & Co
GmbH,2340,Mödling,Einbahnstrasse 77,32145]]></data>

</row_import>
</request>

The ipos attribute means the hierarchical position of the table, where 0 is the root
table, 1 is a child table, 2 is a grandchild table etc. irelpos is an index of the table
if imported multiple times.

The status attribute says, if the record is updated or newly created (status = 2) etc.
status 0 is returned for the last data set, because in this data set only a company
(and no person) is specified. The id attribute represents the id of the record in the
Aurea CRM data base. For fur ther details see the remarks in the description of the
<row_import> command.

<response>
<!-- … -->
<row_import format_name="pvcs_67776_row_import" record_separator="&#xA;"

field_separator=";">
<r row="1" ipos="0" irelpos="0" status="261" table="FI"

id="296352743515"></r>
<r row="2" ipos="0" irelpos="0" status="261" table="FI"

id="296352743515"></r>
<r row="3" ipos="0" irelpos="0" status="16" table="FI" id="0">

<e rc="3">
<field table="FI" tablename="Company" fid="63" fnr="63" type="L"

fieldname="FreeN1"></field>
<msg>negative value</msg>

</e>
</r>
<r row="4" ipos="0" irelpos="0" status="16" table="FI" id="0">

<e rc="4">
<field table="FI" tablename="Company" fid="123" fnr="123" type="D"

fieldname="MatchupDate"></field>
<msg>invalid month</msg>

</e>
</r>
<r row="5" ipos="0" irelpos="0" status="261" table="FI"

id="296352743515"></r>
</row_import>

</response>

<request>
<row_export format_name="Importformat CompanyPerson"

output_file="$\Documents\ Export_Firmen_und_Personen.txt "/>
</request>
<response>

<!-- … -->
<row_export format_name=" Importformat CompanyPerson" output_file="$\

63AUREA CONFIDENTIAL

Commands



Documents\Export_Firmen_und_Personen.txt"/>
</response>

The example above illustrates a <row_export> command, where the resulting file is
written to the "\documents" subfolder of the CRM.interface installation directory.

Note:  Currently there is no possibility to specify separators in the <row_export>
directly, this may only be done in the Aurea CRM export format.

<sleep>

The <sleep> command causes interface to sleep for a given number of milliseconds.
This request might be useful in testing scenarios.

<sleep>

<sleep> </sleep>Appearance

msec transaction

if

any Custom Attribute

Attributes

(No child elements)Contents

<request>May occur in

Use with caution and consider that time-outs may occur on end-
points.

Remarks

<request>
<sleep msec="1000"/>

</request >
<response>

<sleep msec="1000"/>
</response>

<status>

The <status> command allows for testing, if interface is up and running – it returns
various data (Operating System etc.) where interface is running and internal status
data about CRM.interface.

<status/>

<status> </status>Appearance

datamodel profiling_snapshot

if transaction

any Custom Attribute

Attributes

64AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<status/>

(No child elements)Contents

<request>May occur in

Content of the response may be changed without notice in fur ther
versions.

Remarks

<request>
<status/>

</request>

<test>

The <test> command is for internal purpose only. Do not use except when explicitly
instructed to do so.

<transaction>

The <transaction> command is used to begin and end transactions explicitly.

<transaction/>

<transaction> </transaction>Appearance

cmd

if

any Custom Attribute

Attributes

(No child elements)Contents

<request>May occur in

For fur ther details see Working with transactions.Remarks

<update>

The <update> command allows updating multiple records from a single table (like
in the CRMwin service module).

65AUREA CONFIDENTIAL

Commands



<update/>

<update> </update>Appearance

any Command Attribute

if

any Custom Attribute

Attributes

tables links? fields? condition? sor tlist? custom_sortlist?Contents

<request>May occur in

The <update> command is executed as a <query> and the result-
ing records are updated with the specified fields.

Be sure that the set of records to be updated are properly limited
by conditions or links, otherwise you might update too many or
even all records in a table.

Remarks

<request>
<update>

<tables>
<table tablename="Company"/>

</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="Test
interface 1"/>

</condition>
<fields>

<Company>
<Synonym>update</Synonym>
<FreeN1>10</FreeN1>

</Company>
</fields>

</update>
</request>
<response>

<update>
<return table="FI" tablename="Company" id="4294979929" type="update"/>
<return table="FI" tablename="Company" id="4294979937" type="update"/>

</update>
</response>

In the example above all company records that match the condition (Company star ts
with "update-test") is updated with the fields Synonym and FreeN1.

The response returns the record id of each updated record.

<xquery>

The <xquery> command executes a "Query" or "Read Engine" format.

66AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<xquery />

<xquery> </xquery>Appearance

name type

any Command Attribute

if

any Custom Attribute

Attributes

par*Contents

<request>May occur in

Regarding par* see example below.Remarks

In the example the format with type "Query" (defined in CRMweb) and the declared
name ("My Web Query") is read and executed. The response does not return the
format definition but the records which are the result of executing the query.

<request>
<xquery name="My Web Query" type="32"/>

</request>
<response>

<xquery name="My Web Query" type="32">
<Company tableshort="FI" id="4294967332">

<Company>My Company 1</Company>
<Synonym>internal</Synonym>
<Country>Österreich</Country>
<Person tableshort="KP" id="4294968027">

<LastName>Maier</LastName>
<FirstName>Sabine</FirstName>

</Person>
<Person tableshort="KP" id="4294968028">

<LastName>Müller</LastName>
<FirstName>Stefan</FirstName>

</Person>
<!-- … -->

</Company>
<Company tableshort="FI" id="4294975524">

<!-- … -->
</Company>

</xquery>
</response>

In this case the format with type "Read Engine" is executed and the response also
returns the resulting records. The structure of the response is similar to the example
before.

<request>
<xquery name="My Read Engine" type="34"/>

</request>

If the "Query" or "Read Engine" format contains parameters, they need to be specified
in <par> elements. Each parameter is referenced with fieldname and its respective
table prefix.

<request>
<xquery name="Test Read Engine with parameter" type="34">

<par prefix="FI" fieldname="Country">Österreich</par>

67AUREA CONFIDENTIAL

Commands



</xquery>
</request>

If parameters are unresolved, the following error is returned:
<response>

<!--... -->
<xquery name="Test" type="34">

<return type="error" func="C_CursorMD::ResolveFilterParameters">
<ecode>-10081</ecode>
<etext>Unresolved parameter</etext>
<prefix>FI</prefix>
<fieldname>Country</fieldname>
<index>0</index>

</return>
</xquery>

</response>

Common Elements
List of common elements XML syntax reference.

<table>

The <table> element is used to reference a single table. If a table is read multiple
times in a query aliases have to be used.

<table/>

<table> </table>Appearance

alias allfields flags flags2 index keys keysend linkId maxrecords
readtype relindex setlen

Attributes

<table>Contents

<request>May occur in

noneRemarks

<request>
<query>

<tables>
<table tablename="Company">

<table tablename="Person">
<table tablename="Contact"/>

</table>
<table tablename="Contact" alias="Contact2"/>

</table>
</tables>
<condition>

<cond tablename="Contact" alias="Contact2" fieldname="PeGrp" op="="
value="0"/>

<cond tablename="Contact" alias="Contact2" fieldname="PeNo" op="="
value="0"/>

</condition>
<fields tablename="Company" fields="Company"/>
<fields tablename="Person" fields="LastName"/>
<fields tablename="Contact" fields="Contact,Date,Time"/>

68AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<fields tablename="Contact" alias="Contact2"
fields="Contact,Text,Subject"/>

</query>
</request>

In this example the contact table is read twice, first person-related and second
company-related.

In the second case, without the condition, all contacts related to the company would
be returned (also contacts related to any person from that company). The condition
serves to return only the contacts directly related to the company.

Note:  In the second case the alias name is used as tablename.

<Contact2 tableshort="MA" id=" 4294967394">
<Contact>Letter</Contact>
<Text>any text</Text>
<Subject>any text</Subject>

</Contact2>

Because the combination of tablename and alias has to be unique, one additional
reference to the same table can also use the tablename as alias in order to have
the same "tablename" in the response.

<field>

The <field> element is used to reference a single field. This can be used if only a
single field is needed or for fields that need to have differing flags set (like read as
external key etc.).

<field/>

<field> </field>Appearance

table tablename fid fieldname extkey (bool)Attributes

(no contents)Contents

< fields >May occur in

NoneRemarks

In this case different attributes (e.g. extkey) can be set separately for each field.
<request>
<query>

<tables>
<table tablename="Company"/>
<table tablename="Person"/>

</tables>
<fields>

<field tablename="Company" fieldname="Company"/>
<field tablename="Company" fieldname="Synonym"/>
<field tablename="Company" fieldname="Country" extkey="true"/>
<field tablename="Company" fieldname="LeadStatus" extkey=" false" />”
<field tablename="Person" fieldname="LastName"/>
<field tablename="Person" fieldname="FirstName"/>

</fields>

69AUREA CONFIDENTIAL

Common Elements



</query>
</request>

<link>

The <link> element is used to reference a linked record (or "record link”) by record
id.

<link/>

<link> </link>Appearance

table tablename recId linkId optional idAttributes

(no contents)Contents

<links>May occur in

noneRemarks

In this example the linked company record is referenced by its record id (attribute
recId). The imported person record is linked to this company.

<request>
<import>

<fields>
<Person>

<links>
<link tablename="Company" recId="4294967297"/>

</links>
<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Person>
</fields>

</import>
</request>

<request>
<import>

<fields>
<Contact>

<links>
<link tablename="Company" recId="4294967297"/>
<link tablename="Activity" recId="4294967565" optional="true"/>

</links>
<Contact>Brief</Contact>
<Subject>Imported via CRM.interface</Subject>

</Contact>
</fields>

</import>
</request>

<request>
<import>

<fields>
<ProblemResolution>

<links>
<link table="FI" tablename="Company" recId="4294980423"/>

<link table="FI" tablename="Company" recId="4294981501" linkId="1"/>

<link table="FI" tablename="Company" recId="4294981502" linkId="2"/>

70AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<link table="FI" tablename="Company" recId="4294981503" linkId="3"/>

</links>
<No>4032010</No>
<ProblemGroup>Software</ProblemGroup>
<Problem>Bug</Problem>

</ProblemResolution>
</fields>

</import>
</request>

<links>

The <links> element is used to reference linked records (or "record links”).

<links/>

<links> </links>Appearance

(no attributes)Attributes

<link>

(any record)

Contents

<import>

<query>

<putdoc> <doclinks>

(any record)

<match>

May occur in

The record links can be specified via the <link> element (it by
record id), or using by specifying a record.

Remarks

<request>
<import>

<fields>
<Person>

<links>
<Company>

<Company>update software AG</Company>
<Synonym>update</Synonym>
<Country>Österreich</Country>

</Company>
</links>
<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Person>
</fields>

</import>
</request>

In the example above the linked record (company) is specified by contents of cer tain
fields. The person record is imported and linked to this company, if exactly one
unique matching company record exists. Otherwise an error is returned.

71AUREA CONFIDENTIAL

Common Elements



Note: The link record has to be just one unique record.

In the next example more than one link record for the contact record is specified
(company and activity). Usually the contact is only imported if unique company and
activity record exist. In this case the activity link record is not mandatory (due to
optional=”true”).

<request>
<import>

<fields>
<Contact>

<links>
<Company>

<Company>update software AG</Company>
<Synonym>update</Synonym>
<Country>Österreich</Country>

</Company>
<Activity optional="true">

<Activity>PR Event</Activity>
<Level>1</Level>

</Activity>
</links>
<Contact>Brief</Contact>
<Subject>Imported via interface</Subject>

</Contact>
</fields>

</import>
</request>

In the default data model a ticket record has more than one link to the company table
(default link, end customer company, contact company and company billing address).

In the next example the ticket record is linked to 4 different companies, each spec-
ified by the relevant link id.

Note: The link ids can be checked up in the data model in the service module of
CRMwin or with a suitable <metainfo> request.

<request>
<import>

<fields>
<ProblemResolution>

<links>
<Company>

<Company>update software AG</Company>
<Synonym>default link</Synonym>

</Company>
<Company linkId="1">

<Company>company for ticket end customer</Company>
<Synonym>link no 1</Synonym>

</Company>
<Company linkId="2">

<Company>company for ticket contact</Company>
<Synonym>link no 2</Synonym>

</Company>
<Company linkId="3">

<Company>company for billing address</Company>
<Synonym>link no 3</Synonym>

</Company>
</links>
<No>4032010</No>
<ProblemGroup>Software</ProblemGroup>
<Problem>Bug</Problem>

</ProblemResolution>
</fields>

72AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



</import>
</request>
<response>

<import>
<return table="KM" tablename="ProblemResolution" id="4294967501"

type="insert">
<links>

<link table="FI" tablename="Company" id="4294980423" linkId="-1"/>
<link table="FI" tablename="Company" id="4294981501" linkId="1"/>
<link table="FI" tablename="Company" id="4294981502" linkId="2"/>
<link table="FI" tablename="Company" id="4294981503" linkId="3"/>

</links>
</return>

</import>
</response>

<condition>

The <condition> element is used to describe a condition for one table.

<condition/>

<condition> </condition>Appearance

(no attributes)Attributes

<cond> <lop>Contents

<query>May occur in

noneRemarks

<cond>

The <cond> element is used to describe a condition on a single field.

<cond/>

<cond> </cond>Appearance

table tablename fid fieldname fieldname2 mnr name value extkey
(bool) extkey2 mnr2 value2 op

Attributes

(no contents)Contents

<condition> <lop>May occur in

noneRemarks

The example request below returns all companies located in Austria.
<request>

<query>
<tables>

73AUREA CONFIDENTIAL

Common Elements



<table tablename="Company"/>
</tables>

<fields tablename="Company" fields="Company, Synonym,Country,Street,Tel"/>

<condition>
<cond tablename="Company" fieldname="Country" op="=" value="Austria"/>

</condition>
</query>

</request>

The request below returns all companies located in Austria and within these compa-
nies all person and contact records matching the condition (Person: LastName star ts
with "B” and Contact: contact type=Letter).

Note:  A separate <condition> section has to be declared for each table.

<request>
<query>

<tables>
<table tablename="Company">

<table tablename="Person"/>
<table tablename="Contact"/>

</table>
</tables>

<fields tablename="Company" fields="Company,S ynonym,Country,Street,Tel"/>

<fields tablename="Person" fields="LastName, FirstName"/>
<fields tablename="Contact" fields="Contact, Subject "/>
<condition>
<cond tablename="Company" fieldname="Country" op="=" value="Austria"/>

</condition>
<condition>

<cond tablename="Person" fieldname="LastName" op="=" value="B*"/>
</condition>
<condition>

<cond tablename="Contact" fieldname="Contact" op="=" value="Letter"/>

</condition>
</query>

</request>

In the next example the condition is interpreted as follows: companies where
LeadStatus=”Customer” AND Revenue>1000000 and Employees>250 AND
Rep=current Rep AND (Country=Austria OR Germany).

Note:  In order to combine conditions with the logical operator OR you have to
include them into a <lop value=”or”/> element. By default <cond> elements on the
top level are combined with the logical operator AND.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,Synonym,Country,Street, el"/>

<condition>
<cond tablename="Company" fieldname="LeadStatus" op="="

value="Customer"/>
<lop value="and">
<cond tablename="Company" fieldname="Revenue" op=">" value="1000000"/>

<cond tablename="Company" fieldname="Employees" op="=" value="250"/>

74AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



</lop>
<cond tablename="Company" fieldname="Rep" op="=" value="$curRep"/>
<lop value="or">
<cond tablename="Company" fieldname="Country" op="=" value="Austria"/>

<cond tablename="Company" fieldname="Country" op="=" value="Germany"/>

</lop>
</condition>

</query>
</request>

In the example below all interest records are returned where InterestGroup="sports"
AND Interest="soccer". The child catalog value is specified by the attribute value,
the parent catalog value by the attribute value2.

Note:  For backwards compatibility, the catalog values can be combined into the
value attribute by using ~ as separator. (e.g. value="soccer~sports"). But this is
deprecated and should not be used because it might not be supported in upcoming
versions of interface any more.

<request>
<query>

<tables>
<table tablename="Interests"/>

</tables>
<fields tablename="Interests" fields="InterestGrp,Interest"/>
<condition>
<cond tablename="Interests" fieldname="Interest" op="=" value="soccer"

value2="sports"/>
</condition>

</query>
</request>

In the example below all companies are returned where the contents of the field
FreeC1 and FreeC2 are equal (and not empty).

Note:  In order to compare the contents of two fields in a condition, the first field
has to be specified by the fieldname attribute, the second field by the fieldname2
attribute.

Note:  It is not possible to compare fields with different field types.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,FreeC1,FreeC2"/>
<condition>
<cond tablename="Company" fieldname="FreeC1" op="=" fieldname2="FreeC2"

/>
<cond tablename="Company" fieldname="FreeC1" op="!=" value=""/>
<cond tablename="Company" fieldname="FreeC2" op="!=" value=""/>

</condition>
</query>

</request>

75AUREA CONFIDENTIAL

Common Elements



In example below all companies are returned where the contents of the field Rep
equals the rep of the logged-in user.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,Rep"/>
<condition>

<cond tablename="Company" fieldname="Rep" op="=" value="$curRep" />
</condition>

</query>
</request>

In this example all companies are returned where the contents of the field FreeD1
equals the current date plus 5 days.

Note:  Fur ther variables that can be used are described in the trigger section of the
CRM.core Administrator Guide.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,FreeD1"/>
<condition>
<cond tablename="Company" fieldname="FreeD1" op="=" value="$curDay+5d"

/>
</condition>

</query>
</request>

CRM.interface supports conditions on the timestamps of field values. The example
below illustrates how to find out when the value of a cer tain field was last modified
(using the attribute lupd).

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<fields tablename="Company" fields="Company,FreeD1"/>
<condition>
<cond tablename="Company" fieldname="Synonym" op=">=" lupd="$curDay-2"

/>
</condition>

</query>
</request>

In this example all companies are returned where the content of the field Synonym
was last modified within the last 2 days.

Note:  In order to use time conditions as well, you have to add the time to the value
of lupd separated by a comma using the time format hhmmssttt. e.g.
lupd="$curDay-2,144500000" … last modified since 2:45 p.m. 2 days ago.

Note:  If no time is specified the condition is evaluated for the date only.

76AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<sortlist>

The <sortlist> element is used to specify the sor t order for one table.

<sortlist/>

<sortlist> </sor tlist>Appearance

(no attributes)Attributes

<sort>Contents

<query>May occur in

noneRemarks

<custom_sortlist>

The <custom_sortlist> element is used to describe post-processing sor t criteria.

<custom_sortlist/>

<custom_sortlist> </custom_sortlist>Appearance

(no attributes)Attributes

<sort>Contents

<query>May occur in

noneRemarks

77AUREA CONFIDENTIAL

Common Elements



Attributes
Attributes are designed to contain data related to a specific element.

Request Attributes
List of attributes for request element.

ixslt

ixslt

[ixslt = string]Syntax

<request>May occur in

A semicolon-delimited list of style sheets that are applied to the
XML request before processing of commands star ts.

Description

log

log

[log = string]Syntax

<request>May occur in

A filename where the XML response is logged.Description

logmode

logmode

[logmode = (append | create)]Syntax

<request>May occur in

Whether to append to or truncate the file specified in the log at-
tribute.

Description

78AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



noerrorlog

noerrorlog

[noerrorlog = Boolean : false]Syntax

<request>May occur in

An indicator of whether to create the error and error import logs.Description

oxslt

oxslt

[oxslt = string]Syntax

<request>May occur in

A semicolon-delimited list of style sheets that are applied to the
XML response after processing of commands has finished.

Description

Session attributes
List of attributes related to session.

auth

auth

[auth = string]Syntax

<request>, any Command elementMay occur in

An authentication token that contains encrypted credentials
(username and password). If specified, the user and pwd attributes
are ignored. This token can be generated using the update.mmU-
tilities.Cryptography class in conjunction with configured users
managed by the mmUserConfig.exe utility.

If Force login encryption is enabled, a login can only be authenti-
cated through this token. A login through the user and pwd at-
tributes fails.

Description

79AUREA CONFIDENTIAL

Attributes



domain

domain

[domain = string]Syntax

<request>, any Command elementMay occur in

The domain name for single sign-on (SSO) authentication.

Note:  In an non-interactive scenario the domain/user combination
as specified in the XML request cannot be verified against the
current "active user" and so has to come from a trusted source
(HTTP authentication for example).

Description

impersonate

impersonate

[impersonate = string]Syntax

<request>, any Command elementMay occur in

A reference to a login user that is to be impersonated. See Imper-
sonation on page 144.

Description

lang

lang

[lang = string]Syntax

<request>, any Command elementMay occur in

The ISO639 language code for the language to be used. Alterna-
tively, the Aurea CRM language index can be specified for back-
wards compatibility. See the xml:lang attribute.

Description

80AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



xml:lang

81AUREA CONFIDENTIAL

Attributes



xml:lang

[xml:lang = string]Syntax

<request>, any Command elementMay occur in

82AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



xml:lang

The ISO639 language code for the language to be used. The fol-
lowing table lists the languages supported by Aurea CRM.

ISO639indexLanguage

de0German

en1English

fr2French

es3Spanish

pt4Portuguese

nl5Dutch

da6Danish

it7Italian

cs8Czech

hu9Hungarian

sk10Slovak

pl11Polish

el12Greek

uk13Ukrainian

sl14Slovenian

ru15Russian

sv16Swedish

fi17Finnish

no18Norwegian

tr19Turkish

hr20Croatian

sr21Serbian

ro22Romanian

ja23Japanese

zh24Chinese

ko25Korean

bg26Bulgarian

th27Thai

Description

83AUREA CONFIDENTIAL

Attributes



langNo

langNo

[langNo = unsignedShort]Syntax

<request>, any Command elementMay occur in

The language number as defined in the Language table (table
00).

Description

module

module

[module = string]Syntax

<request>, any Command elementMay occur in

interface connectlive connector webserviceValues

The name of the module to be assumed.Description

pwd

pwd

[pwd = string]Syntax

<request>, any Command elementMay occur in

The login password (in plain text).Description

84AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



user

user

[user = string]Syntax

<request>, any Command elementMay occur in

The login username. The user and pwd attributes can be used to
authenticate a login in plain text if no encryption is desired (e.g.
in a trusted local network) or necessary (e.g. if the request is
transmitted using HTTPS).

If no pwd attribute, but a domain attribute is given, single sign-
on (SSO) authentication is used (see the domain attribute).

Description

Common Attributes
List of attributes for common elements.

extkey (boolean)

extkey (boolean)

[extkey = Boolean : false]Syntax

<field> < fields > <cond> <getcat>

any Import field

May occur in

An indicator of whether the referenced (field-) value specifies an
external key.

Description

Currently, this attribute is also used to specify an external key in
other places. This is fixed in an upcoming version.

Remarks

85AUREA CONFIDENTIAL

Attributes



extkey (value)

extkey (value

[extkey = string]Syntax

<link>

destination_record source_record

May occur in

The value of an external key.Description

Currently, this attribute is also used to specify whether an external
key is referenced in other places. This is fixed in an upcoming
version.

Remarks

extkey_as_attr

extkey_as_attr (boolean)

[extkey_as_attr = Boolean : false]Syntax

<field> < fields > <cond>May occur in

An indicator of whether the external key of a catalog value is re-
turned as its own attribute extkey on field level. If true, the exter-
nal key is returned (as value of attribute extkey) as well as the
catalog text in the response.

Description

This attribute is only valid in conjunction with the attribute extkey.Remarks

The following examples of request and response with extkey_as_attr on field level.
<request>

<query>
<tables>

<table tablename="Company"/>
</tables>
<fields>

<field tablename="Company" fieldname="Company"/>
<field tablename="Company" extkey="true" extkey_as_attr="true"

fieldname="Country"/>
</fields>

</query>
</request>

<response>
<query>

<Company tableshort="FI" id="73014444233">
<Company>Austrian Company</Company>
<Country extkey="AUT">Österreich</Country>

</Company>
</query>

</response>

86AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



extsystem

extsystem

[extsystem = string]Syntax

< cond > < link > < merge >

any valid Command element

any valid Table or field element

May occur in

The value of an external system.Description

Used in conjunction with an external key.Remarks

fid

fid

[fid = int]Syntax

< field > (or any other field reference)May occur in

The field id or the core field id (see cid attribute in <metainfo/>),
unique within its table.

Description

The field index is usually specified in the fnr attribute.Remarks

fieldname

fieldname

[fieldname = string]Syntax

< field > (or any other field reference)May occur in

The XML name of a field, unique within its table.Description

The language-dependent name is usually specified in the name
attribute.

Remarks

87AUREA CONFIDENTIAL

Attributes



fields

fields

[fields = string]Syntax

< field > (or any other field reference)May occur in

A comma-separated list of fields.Description

Wildcards and regular expressions can be used.Remarks

fnr

fnr

[field = int]Syntax

< field > (or any other field reference)May occur in

The field index, unique within its table.Description

The field id is usually specified in the fid attribute.Remarks

if

if

[if = string]Syntax

any Command elementMay occur in

An XPath specifying a condition that is evaluated against the
current MP-document. If successful, the element is processed,
otherwise it is ignored.

Description

See Message Processing.Remarks

88AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



mnr

mnr

[mnr = unsignedShort]Syntax

(any field)May occur in

The tenant number.Description

name

name

[name = string]Syntax

<cond>

(used in various places in the response document)

May occur in

The name of a table, field, catalog, or other entity.Description

Commonly used to reference a language-dependent entity in the
data model.

Remarks

optional

optional

[optional = Boolean : false]Syntax

<link>

(any import field)

May occur in

An indicator of whether a processing error of this element causes
an error. If true, an error is ignored and the respective element
is treated as if it is absent.

Description

Commonly used for optional links.Remarks

89AUREA CONFIDENTIAL

Attributes



recId

recId

[recId = unsignedLongHex]Syntax

<table>

(any record)

May occur in

A 64-bit record id specified in hexadecimal notation and prefixed
with an 'x' character.

Description

Usually represented in full length with left zero padding.Remarks

table

table

[table = string]Syntax

< table > or any other table referenceMay occur in

The table id. When used in an XML request, interface also tries
to look up the table by its name when it is not found via its id.

Description

See also the tablename attribute.Remarks

tablename

tablename

[tablename = string]Syntax

< table > or any other table referenceMay occur in

The XML name of a table. When used in an XML request, interface
also tries to look up the table by its id when it is not found via its
name.

Description

See also the table attribute.Remarks

90AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



value

value

[value = string]Syntax

<cond>

(used in various places in the response document)

May occur in

The value of a condition or field.Description

noneRemarks

Command attributes
List of attributes that are parsed on every command element, although most of them
affect the processing of only a subset of commands.

Below is the list of attributes:

__iflags

__iflags

[__iflags = mmFlags]Syntax

(any Command element)May occur in

Internal flags that control processing.Description

Do not use (internal use only).Remarks

91AUREA CONFIDENTIAL

Attributes



catbynum

catbynum

[catbynum = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether catalog values are specified by a numeric
index (as opposed to its textual value). This affects both request
(records specified in <import> commands for example) and re-
sponse (records returned from <query> commands for example).

Description

The catbynum and catexkeys indicators cannot both be setRemarks

catexkeys

catexkeys

[catexkeys = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether catalog values are specified by external
key (as opposed to its textual value). This affects both request
(records specified in <import> commands for example) and re-
sponse (records returned from <query> commands for example).

Description

The catbynum and catexkeys indicators cannot both be setRemarks

92AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



catformat

catformat

[catformat = string]Syntax

(any valid Command element)May occur in

Indicates a format how catalog values are specified in requests,
if the values are a combination of external key and text.

Values:

1 = [EXTKEY] Text

2 = Text [EXTKEY]

3 = (EXTKEY) Text

4 = Text (EXTKEY)

5 = EXTKEY-Text

6 = EXTKEY|Text

7 = EXTKEY - Text

8 = EXTKEY | Text

9 = EXTKEY Text

Description

This indicator takes precedence over the catbynum and catexkeys
attributes.

Remarks

dateformatin

dateformatin

[dateformatin = string]Syntax

(any valid Command element)May occur in

The order of the date components if not unique.

Possible values are "dmy", "mdy", "ymd", "ydm".

Description

noneRemarks

93AUREA CONFIDENTIAL

Attributes



dateformatout

dateformatout

[dateformatout = string]Syntax

(any valid Command element)May occur in

The formatting for date values in the response.Description

See Formatting Date and Time Values.Remarks

fixcatint

fixcatint

[fixcatint = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether values of static catalogs are specified as
numeric index (as opposed to textual value).

Description

noneRemarks

flags

flags

[flags = mmFlags]Syntax

(any valid Command element)May occur in

Flags that control processing.Description

See List of flags that control processing on page 159.Remarks

94AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



flags2

flags2

[flags2 = mmFlags]Syntax

(any valid Command element)May occur in

Flags that control processing.Description

See List of flags that control processing on page 159.Remarks

force_internal_matchup

force_internal_matchup

[force_internal_matchup = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether the Aurea CRM internal logic is to be used
for a matchup (as opposed to the external matchup configured in
the configuration table).

Description

See Matchup on page 147.Remarks

internalfields

internalfields

[internalfields = string]Syntax

(any valid Command element)May occur in

An indicator of whether cer tain fields should be generated in the
response. These include the primary key and last modified
timestamp for records, and the update timestamps for fields.

Description

noneRemarks

95AUREA CONFIDENTIAL

Attributes



lazy_catfilter

lazy_catfilter

[lazy_catfilter = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether non-existing catalog values used in a
query do not result in an error. If true, a condition that always
evaluates to false is generated instead of the failing comparison.

Description

noneRemarks

lazy_filter

lazy_filter

[lazy_filter = Boolean : false]Syntax

(any valid Command element)May occur in

Combines the lazy_catfiler and lazy_repfilter attributes.Description

noneRemarks

lazy_repfilter

lazy_repfilter

[lazy_repfilter = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether non-existing rep values used in a query
do not result in an error. If true, a condition that always evaluates
to false is generated instead of the failing comparison.

Description

noneRemarks

96AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



matchup

matchup

[matchup = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether the matchup is to be done for records in
<import> commands.

Description

The force_internal_matchup and use_configured_matchup at-
tributes are only considered when matchup is true. See Matchup
on page 147.

Remarks

nodefaults

nodefaults

[nodefaults = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether default values should be set when creating
new records.

Description

This flag is primarily for testing purposes – the setting "nodefaults"
can cause the record not to be created due to missing default
values or violate your business rules.

Remarks

97AUREA CONFIDENTIAL

Attributes



noerror

noerror

[noerror = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether field-check errors during the processing
of < import > commands are to be ignored (and processing con-
tinues).

Description

For example, if you have no permission to update a field, this
field is left unchanged (and the record is updated with all fields
you have permission for) instead of an error generated and no
update taking place.

Remarks

nomustcheck

nomustcheck

[nomustcheck = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether must-fields are to be checked.Description

This flag is primarily for testing purposes – setting "nomustcheck"
can violate your business rules due to missing mandatory fields.

Remarks

notrigger

notrigger

[notrigger = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether triggers are run when processing write
operations on records.

Description

This flag is primarily for testing purposes – setting "notrigger"
can violate your business rules.

Remarks

98AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



readback

readback

[readback = string]Syntax

(any valid Command element)May occur in

Return record data instead of success/failure information for write
operations on records.

Description

See Returning record data.Remarks

return

return

[return = string]Syntax

(any valid Command element)May occur in

Deprecated, only retained for backwards compatibility.Description

Use readback='true' instead of return='2', and readback='false'
instead of return='0'.

Remarks

timeformatout

timeformatout

[timeformatout = string]Syntax

(any valid Command element)May occur in

The formatting for time values in the response.Description

See Formatting Date and Time Values.Remarks

99AUREA CONFIDENTIAL

Attributes



threads

type

[threads = unsignedByte]Syntax

(any valid Command element)May occur in

The number of concurrent threads to be used when importing
records.

Description

See Working with "Threads" on page 148.Remarks

transaction

transaction

[transaction = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether a transaction context is established or
not. Requests within transactions are rolled back if one of the
requests fails.

Description

Although it is possible to set the transaction on every command
element it doesn’t affect the behavior in all cases since this at-
tribute is ignored by the data base layer. E.g. during pure read
only operations there is no transaction context established at all.

Note:  if catnew = true, catalog values are generated anyway no
matter if the requests of the transaction are executed successfully
or rolled back.

For fur ther details and examples see Working with transactions
below.

Remarks

100AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



truncate

truncate

[truncate = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether field values for text fields in < import >
commands should be truncated if they are too long.

Description

noneRemarks

updtimestamps

updtimestamps

[updtimestamps = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether the update timestamps for fields should
be generated in <query> results.

Description

These timestamps (and more) are also generated when setting
the internalfields attribute.

Remarks

use_configured_matchup

use_configured_matchup

[use_configured_matchup = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether the matchup configured in the configuration
table is to used.

Description

See Matchup.Remarks

101AUREA CONFIDENTIAL

Attributes



xsdt

xsdt

[xsdt = Boolean : false]Syntax

(any valid Command element)May occur in

An indicator of whether XML Schema data types are to be used
in the response. Affects the following field types: numbers, dates
and times.

Description

The use of XML Schema data types is highly recommended for
data exchange.

Remarks

<cond> attributes
List of attributes for <cond> element.

extkey2

extkey2

[extkey2 = Boolean : false]Syntax

<cond>

(any valid field)

May occur in

An indicator of whether the parent catalog is specified as external
key (as opposed to textual value).

Description

See also the mnr2 attribute.Remarks

In this example all interest records are returned where the external key of Interest-
Group="ext_parent" AND the external key of Interest="ext_child". Both catalogs are
specified as external keys, the child catalog due to attribute extkey="true", the
parent catalog due to extkey2="true".

<request>
<query>

<tables>
<table tablename="Interests"/>

</tables>
<fields tablename="Interests" fields="InterestGrp,Interest"/>
<condition>

<cond tablename="Interests" fieldname="Interest" op="=" extkey="true"
value="ext_child" extkey2="true" value2="ext_parent"/>

</condition>
</query>

</request>

102AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



mnr2

mnr2

[mnr2 = unsignedShort]Syntax

<cond>

(any valid field)

May occur in

The tenant number for a parent catalog.Description

See also the extkey2 attribute.Remarks

op

op

[op = string]Syntax

<cond>May occur in

=, != (also <>), <, >, <=, >=, (), )(

Note: These operators must be given in escaped form, e.g. "&lt;"
instead of "<" and "&lgt;" instead of ">".

Values

The comparison operator for a single condition.Description

The () and )( operators mean "containing" and "not containing".Remarks

value2

value2

[value2 = string]Syntax

<cond>

(any valid field)

May occur in

The value of the parent catalog.Description

noneRemarks

103AUREA CONFIDENTIAL

Attributes



lupd

lupd

[lupd = string]Syntax

<cond>May occur in

The value of the last-modified timestamp of a specified field.Description

See query with conditions with condition on timestamp.Remarks

<dictionary> attributes
List of attributes for <dictionary> command.

complete

complete

[complete = Boolean : false]Syntax

<dictionary>May occur in

An indicator of whether all or only user-defined fields should be
considered when generating the dictionary.

Description

noneRemarks

104AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<getcat> attributes
List of attributes for <getcat> command.

include_locked_values

include_locked_values

[include_locked_values = Boolean : false]Syntax

<getcat>May occur in

An indicator of whether locked catalogs should be included in the
response.

Description

noneRemarks

id

id

[id = unsignedInt]Syntax

<getcat>May occur in

An indicator of whether a catalog is request by its idDescription

noneRemarks

<getdoc> attributes
List of attributes for <getdoc> command.

decipher

decipher

[decipher = Boolean : false]Syntax

<getdoc>May occur in

Description

See Document encryption on page 159.Remarks

105AUREA CONFIDENTIAL

Attributes



decrypt

decrypt

[decrypt = Boolean : false]Syntax

<getdoc>May occur in

Description

See Document encryption on page 159n.Remarks

forceBase64

forceBase64

[forceBase64 = Boolean : false]Syntax

<getdoc>May occur in

An indicator of whether XML documents are generated as base64-
encoded blob (instead of inline XML).

Description

Usually used when uniform processing of documents is desired.Remarks

verify

verify

[verify = Boolean : false]Syntax

<getdoc>May occur in

Description

See Document encryption.Remarks

106AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<import> attributes
List of attributes for <import> command.

allow_deleted

allow_deleted

[allow_deleted = Boolean : false]Syntax

<import>May occur in

An indicator of whether records marked as deleted (via the DelCd
field) can be updated.

Description

This flag must be set when a record marked as deleted should
be undeleted.

Remarks

107AUREA CONFIDENTIAL

Attributes



catnew

catnew

[catnew = Boolean : false]Syntax

<import>May occur in

An indicator of whether unknown catalog values should be auto-
matically created.

Description

It is recommended that new catalog values is not created using
this flag due to risk of unwanted duplicates. It works only in the
catalog base language.

It is also possible to create new catalog entries based on an ex-
ternal key.

<request>
<import catnew="1">

<fields>
<Company>

<Company>update Test AG</Company>
<FreeK1>Australia</FreeK1>
<FreeK2 extkey="1">AT</FreeK2>

</Company>
</fields>

</import>
</request>

In the sample above for FreeK2 a matchup is performed via Ex-
tKey. If the value AT is not found the catalog is created– contrary
to versions before 7.0.6.203 - (in this sample with Text = AT and
ExtKey = AT) because of catnew="1". If FreeK1 doesn’t exist yet
(matchup is performed via Text) a catalog value with Text =
“Australia” is created.

No additional properties (with the exception of ExtKey) can be
specified when creating catalog values this way.

Remarks

force_update

force_update

[force_update = Boolean : false]Syntax

<import>May occur in

An indicator of whether the record contents in <import> commands
should be checked against the current values in the database. If
true, no check is performed.

Description

noneRemarks

108AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



mode

mode

[mode = string]Syntax

<import>May occur in

normal, plausi, noexec, triggerValues

A mode indicator for write operations.Description

normal = Regular inser t/update is performed.

plausi = Plausibility check is performed.

Remarks

no_insert

no_insert

[no_insert = Boolean : false]Syntax

<import>May occur in

An indicator of whether the creation of a new record is allowed.
If true, only an update is allowed (after matchup has been per-
formed).

Description

noneRemarks

write_cursor_flags

write_cursor_flags

[write_cursor_flags = mmFlags]Syntax

<import>May occur in

Flags that control processing of the <import> command.Description

Currently not usedRemarks

109AUREA CONFIDENTIAL

Attributes



allow_locked_catalogs

allow_locked_catalogs

[allow_locked_catalogs = Boolean : false]Syntax

<import>May occur in

An indicator of whether the import of locked catalog values is al-
lowed as well. If true, locked catalog values are imported instead
of returning an error.

Description

noneRemarks

In case the catalog value "Locked Country" is locked an error is generated, see
example below.

<request>
<import allow_locked_catalogs="false">

<fields>
<Company>

<Company>My Company</Company>
<Country>Locked Country</Country>

</Company>
</fields>

</import>
</request>
<response>

<import>
<return type="error" func="C_Portal::CheckField">

<ecode>-10017</ecode>
<etext>Catalog entry not found</etext>
<code>0</code>
<field table="FI" tablename="Company" fid="5" fnr="5" type="K"

fieldname="Country"/>
<value>Locked Country</value>

</return>
</import>

</response>

In order to allow importing of records with locked catalog values you may set al-
low_locked_catalogs="true".

<request>
<import allow_locked_catalogs="true">

<fields>
<Company>

<Company>My Company</Company>
<Country>LockedCountry</Country>

</Company>
</fields>

</import>
</request>
<response>

<import allow_locked_catalogs="true">
<return table="FI" tablename="Company" id="42953967942464" type="insert"/>

</import>
</response>

110AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<insert> attributes
List of attributes for <cond> command .

See topic <import> attributes on page 107.

<link> attributes
List of attributes for <link> element.

optional

optional

[optional = Boolean : false]Syntax

<link>May occur in

An indicator of whether a link that cannot be successfully resolved
results in an error.

Description

noneRemarks

import

import

[import = Boolean : false]Syntax

<link>May occur in

noneDescription

Currently not used.Remarks

111AUREA CONFIDENTIAL

Attributes



matchup

matchup

[matchup = Boolean : false]Syntax

<link>May occur in

noneDescription

Currently not used.Remarks

<metainfo> attributes
List of attributes for <metainfo> command.

flags

flags

[flags = mmFlags]Syntax

<metainfo>May occur in

The "include" flags (as optionally specified in the include attribute)
in hexadecimal form.

Description

See the include attribute.Remarks

112AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



include

113AUREA CONFIDENTIAL

Attributes



include

[include = string]Syntax

<metainfo>May occur in

Indexes= 0x00000001,Values

Rels= 0x00000002,

Links= 0x00000004,

ReverseLinks= 0x00000008,

AttributeList= 0x00000010,

FormatList= 0x00000020,

CatalogNames= 0x00000040,

Relations= 0x00000080,

AllTableFlags= 0x0000003f,all of the above

BaseFields= 0x00001000,

CoreFields= 0x00002000,

UniqueFields= 0x00004000,

Vir tualFields= 0x00008000,

GdmUpdateFields= 0x00010000,

GdmCustomerFields= 0x00020000,

GdmPartnerFields= 0x00040000,

SqlCoreFields= 0x00080000,

SqlVarFields= 0x00100000,

CustomFields= 0x00200000,

GeneratedFields= 0x00400000,

GdmFields= 0x00070000, GdmUpdateFields + GdmCustomerFields
+ GdmPartnerFields

AllFieldFlags= 0x007ff000,all of the above

CoreTexts= 0x01000000,language-dll

DefaultTexts= 0x02000000,built-in dictionary

CustomTexts= 0x04000000,custom dictionary

MissingTexts= 0x08000000,

AllTextFlags= 0x0f000000, all of the above

AllXmlFlags= 0xffffffff, all possible flags

114AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



include

A comma-separated list of flags that indicate what is to be returned
in the response.

Description

For fur ther information see Field types in appendix.Remarks

mode

mode

[mode = string]Syntax

<metainfo>May occur in

Flat, List, Attribute, AttributeXml, ElementXmlValues

The format of the output.Description

noneRemarks

<merge> attributes
List of attributes for <merge> command.

flag_ignore

flag_ignore

[flag_ignore = Boolean : false]Syntax

<merge>May occur in

This flag is currently not used.Description

noneRemarks

115AUREA CONFIDENTIAL

Attributes



mode

mode

[mode = string]Syntax

<merge>May occur in

source, destination, timestamps, fieldsValues

The mode of how the merge operation is to be performed.Description

source = The source record always wins.

destination = The destination record always wins.

timestamps = The record with a more recent update timestamp
wins.

fields = The records are merged on a field-by-field basis, fields
with a more recent update timestamp win.

Remarks

no_exec

no_exec

[no_exec = Boolean : false]Syntax

<merge>May occur in

An indicator of whether the merge is to be executed. If true, only
the conflicts (if any) are returned, but the actual merge is not
performed.

Description

noneRemarks

116AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



verbose

verbose

[verbose = Boolean : false]Syntax

<merge>May occur in

An indicator of whether to return the conflicts (if any).Description

noneRemarks

<putdoc> attributes
List of attributes for <putdoc> commands.

encrypt

encrypt

[encrypt = Boolean : false]Syntax

<putdoc>May occur in

An indicator of whether the document contents are to be encrypt-
ed.

Description

See Document encryption on page 159.Remarks

sign

sign

[sign = Boolean : false]Syntax

<putdoc>May occur in

An indicator of whether the document contents are to be digitally
signed.

Description

See Document encryption on page 159.Remarks

117AUREA CONFIDENTIAL

Attributes



<query> attributes
List of attributes for <query> command.

back

back

[back = Boolean : false]Syntax

<query>May occur in

back=true delivers the "previous page" of records (in other words:
navigates one page [determined by chunk_size] back from the
current offset).

Description

Attribute is solely valid, if chunked = true and navigable = true.
See

Chunked read for fur ther details.

Remarks

chunked

chunked

[chunked = Boolean : false]Syntax

<query>May occur in

An indicator of whether data should be read in chunks.Description

See

Chunked read for fur ther details.

Remarks

118AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



chunk_size

chunk_size

[chunk_size = unsignedInt]Syntax

<query>May occur in

Defines the maximum number of records to be read in one chunk.Description

Attribute is solely valid if chunked = true. See

Chunked read for fur ther details.

Remarks

clear

clear

[clear = Boolean : false]Syntax

<query>May occur in

An indicator whether the chunked query context should be deleted.

<query qid="myQuery" clear="true"/>

deletes the context of myQuery and subsequent calls returns a
"Chunked read error".

<query qid="myQuery">

<return type="error" func="C_Portal::XmlExecuteQueryChunked">

<ecode>-10090</ecode>

<etext>Chunked read error</etext>

<description>Query not found</description>

</return>

</query>

Description

Attribute is solely valid if chunked = true. See

Chunked read for fur ther details.

Remarks

119AUREA CONFIDENTIAL

Attributes



hardcache

type

[hardcache = Boolean : false]Syntax

<query>May occur in

An indicator whether records (including fields) are cached once
read. Might reduce the number of reads on the data base, but
uses more memory. Changes on records after reading them into
the cache are not reflected.

Description

Attribute is solely valid if chunked = true and navigable = true.
See

Chunked read for fur ther details.

Remarks

labels

labels

[labels = Boolean : false]Syntax

<query>May occur in

An indicator of whether the language-dependent field names
should be generated in the response.

Description

NoneRemarks

120AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



lenient_filter

lenient_filter

[lenient_filter = Boolean : false]Syntax

<query>May occur in

If this attribute is set, conditions which cause a parsing error (e.g.
due to a conversion error because an integer value is compared
with an alphanumeric value) are ignored and solely the remaining
conditions are evaluated.

Description

If all conditions are ignored no data a returned.

This attribute is intended to support "generic searches", where
conditions on fields are generated dynamically. In most scenarios
it makes more sense to overcome conversion errors in conditions
by changing the conditions rather than using this attribute.

For an example see reading with lenient filters in the section
<query>.

Remarks

maxrecords

maxrecords

[maxrecords = unsignedInt]Syntax

<query>May occur in

The maximum number of records to be read in a query.Description

The default value is 9999. This can be changed by setting the
corresponding value in the registry.

Remarks

121AUREA CONFIDENTIAL

Attributes



navigable

navigable

[navigable = Boolean : false]Syntax

<query>May occur in

An indicator whether the record IDs of a "chunked read" are
cached allowing for random access.

Description

Attribute is solely valid if chunked = true. See

Chunked read for fur ther details.

Remarks

offset

offset

[offset = unsignedInt]Syntax

<query>May occur in

The absolute offset (star ting point) for the next "chunked read".Description

Attribute is solely valid if chunked = true. See

Chunked read for fur ther details.

Remarks

page

page

[page = unsignedInt]Syntax

<query>May occur in

The relative offset (page * chunk_size) for the next "chunked
read".

Description

Attribute is solely valid if chunked = true. See

Chunked read for fur ther details.

Remarks

122AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



qid

qid

[qid = String]Syntax

<query>May occur in

A unique ID for a "chunked read" operation.Description

Attribute is solely valid if chunked = true. The qid (query id) can
be used to read subsequent chunks of data. See

Chunked read for fur ther details.

Remarks

reverse

reverse

[reverse = Boolean : false]Syntax

<query>May occur in

An indicator of whether the records are read in descending order.Description

This sets the ordering for all tables used in the query.Remarks

select

select

[select = string]Syntax

<query>May occur in

An XPath filtering the query response. Only matching records are
generated in the response.

Description

noneRemarks

123AUREA CONFIDENTIAL

Attributes



skiprecords

skiprecords

[skiprecords = unsignedInt]Syntax

<query>May occur in

The number of records to be skipped from the beginning.Description

Can be used in conjunction with the maxrecords attribute to im-
plement page-wise reading.

Remarks

<refresh> attributes
List of attributes for <refresh> command.

catalogs

catalogs

[catalogs = Boolean : false]Syntax

<refresh>May occur in

An indicator of whether the catalog cache is to be refreshed.Description

noneRemarks

configuration

configuration

[configuration = Boolean : false]Syntax

<refresh>May occur in

An indicator of whether the configuration cache (i.e. the contents
of the configuration table MC) are to be refreshed.

Description

noneRemarks

124AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



formats

formats

[format = Boolean : false]Syntax

<refresh>May occur in

An indicator of whether the format cache (i.e. the contents of the
format table FT) are to be refreshed.

Description

noneRemarks

protocols

protocols

[protocols = Boolean : false]Syntax

<refresh>May occur in

An indicator of whether the write-protocol cache is flushed to the
database.

Description

noneRemarks

reps

reps

[reps = Boolean : false]Syntax

<refresh>May occur in

An indicator of whether the rep cache is to be refreshed.Description

noneRemarks

125AUREA CONFIDENTIAL

Attributes



<row_export> and <row_import> attributes
List of attributes for <row_export> and <row_import> command.

Note:  Not all attributes are supported by both of the commands. See details in
attribute description below.

boundary_separator

boundary_separator

[boundary_separator = string]Syntax

<row_import>May occur in

Overwrites the boundary separator of the import format.Description

noneRemarks

debug

debug

[debug = Boolean : false]Syntax

<row_export> <row_import>May occur in

Activates the logging of import/export-related traces, these are
written using log level "info".

Description

noneRemarks

field_separator

field_separator

[field_separator = string]Syntax

<row_import>May occur in

Overwrites the field separator of the import format.Description

noneRemarks

126AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



format_name

format_name

[format_name = string]Syntax

<row_export> <row_import>May occur in

The name of the import/export format to be used.Description

noneRemarks

input_file

input_file

[input_file = string]Syntax

<row_import>May occur in

Overwrites the input file from the import format. If import data is
specified as XML and an input file is specified in the format, it
must be set to an empty string.

Description

noneRemarks

output_file

output_file

[output_file = string]Syntax

<row_export>May occur in

Overwrites the output file of the export format.Description

noneRemarks

127AUREA CONFIDENTIAL

Attributes



record_separator

record_separator

[record_separator = string]Syntax

<row_import>May occur in

Overwrites the record separator of the import format. If import
data is specified as rows/row, it must be set to the linefeed char-
acter "&#10;".

Description

Remarks

<sort> attributes
List of attributes for <sort> command.

reverse

reverse

[reverse = Boolean : false]Syntax

<sort>May occur in

An indicator of whether sor ting is to be performed in descending
order.

Description

In contrast to the reverse attribute specified on the <query>
command, the <sort> element is used to specify sor t order per
field per table.

Remarks

<sleep> attributes
List of attributes for <sleep> command.

msec

128AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



msec

[msec = integer]Syntax

<sleep>May occur in

Number of milliseconds to sleep.Description

noneRemarks

<status> attributes
List of attributes for <status> command.

datamodel

datamodel

[datamodel = Boolean : false]Syntax

<status>May occur in

An indicator of whether the complete datamodel (as generated
by CRMwin using the -writexmldef parameter) is included.

Description

This is retained for backwards compatibility only. Use the
<metainfo> command instead.

Remarks

profiling_snapshot

profiling_snapshot

[profiling_snapshot = Boolean : false]Syntax

<status>May occur in

An indicator of whether a profiling snapshot is included.Description

This includes call count and timings of selected functions.Remarks

129AUREA CONFIDENTIAL

Attributes



<table> attributes
List of attributes for <table> command.

alias

alias

[alias = string]Syntax

<table>May occur in

An optional alias to be used to reference the table in the request,
and to be used instead of the tablename in the response. In the
request both the tablename and alias attributes must be used
whenever referencing this table since only the combination of the
attributes tablename and alias is unique in the request.

Description

If a table is read multiple times, all but one must have an alias
defined (to distinguish references to them in the request).

Remarks

allfields

allfields

[allfields = Boolean : false]Syntax

<table>May occur in

An indicator of whether all fields should be read and returned in
the response.

Description

noneRemarks

130AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



flags

flags

[flags = mmFlags]Syntax

<table>May occur in

Flags influencing the read operation.Description

See Cursor Flags on page 160.Remarks

flags2

flags2

[flags2 = mmFlags]Syntax

<table>May occur in

Flags influencing the read operation.Description

See Cursor Flags on page 160.Remarks

index

index

[index = unsignedByte]Syntax

<table>May occur in

The index to be used when reading this table.Description

Available indexes can be queried using the <metainfo> command
(or looked up in the CRMwin service module).

Remarks

131AUREA CONFIDENTIAL

Attributes



keys

keys

[keys = string]Syntax

<table>May occur in

An optional key value used in conjunction with the index, setlen
and keysend attributes.

Description

Deprecated, use a condition instead.Remarks

keysend

keysend

[keysend = string]Syntax

<table>May occur in

An optional key value for range keys, used in conjunction with
the index, setlen and keys attributes.

Description

Deprecated, use a condition instead.Remarks

linkId

linkId

[linkId = short]Syntax

<table>May occur in

The id that specifies the relation between two tables.Description

See samples using linkId in this document.Remarks

132AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



maxrecords

maxrecords

[maxrecords = ]

[maxrecords = unsignedInt]

Syntax

<table>May occur in

The maximum number of records to be read for this table.Description

noneRemarks

readtype

readtype

[readtype = string]Syntax

<table>May occur in

A mode how to read the table.Description

Internal use only.Remarks

relindex

relindex

[relindex = short]Syntax

<table>May occur in

Deprecated, only retained for backwards compatibility. Use the
linkId attribute instead.

Description

noneRemarks

133AUREA CONFIDENTIAL

Attributes



setlen

type

[setlen = unsignedByte]Syntax

<table>May occur in

An optional length for keys, used in conjunction with the index,
keys and keysend attributes.

Description

Deprecated, use a condition instead.Remarks

<transaction> attributes
List of attributes for <transaction> command.

cmd

cmd

[cmd = string]Syntax

<transaction>May occur in

begin, end, commit, rollbackValues

A value that controls the transaction command.Description

noneRemarks

134AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



Other attributes
List of miscellaneous attributes.

context

context

[context = integer]Syntax

< link > <mp:value-of>May occur in

An optional index that specifies the context node (if not unique).Description

noneRemarks

id

id

[id = unsignedLong]Syntax

<table>

Any record

May occur in

A 64-bit record id.Description

Deprecated, only retained for backwards compatibility. See the
recId attribute and "Recommended settings".

Remarks

no_check

no_check

[no_check = Boolean : false]Syntax

<cond>May occur in

An indicator of whether the contents of the value attribute are
validated.

Description

NoneRemarks

135AUREA CONFIDENTIAL

Attributes



In case the catalog value "my test" doesn’t exist or is locked an error is generated,
see example below.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<condition>

<cond tablename="Company" fieldname="FreeK1" op="=" value="my test"/>

</condition>
<fields>

<field tablename="Company" fieldname="Company"/>
</fields>

</query>
</request>
<response>

<query>
<return type="error" func="C_Portal::CheckField">

<ecode>-10017</ecode>
<etext>Catalog entry not found</etext>
<code>0</code>
<field table="FI" tablename="Company" fid="57" fnr="57" type="K"

fieldname="FreeK1"/>
<value>my test</value>

</return>
</query>

</response>

In order to override this behavior you may set no_check="true" – then the check for
existence of the catalog value is omitted.

<request>
<query>

<tables>
<table tablename="Company"/>

</tables>
<condition>

<cond no_check="true" tablename="Company" fieldname="FreeK1" op="="
value="my test"/>

</condition>
<fields>

<field tablename="Company" fieldname="Company"/>
</fields>

</query>
</request>
<response>

<query>
<Company tableshort="FI" id="429496732461">

<Company>Test Company 88</Company>
</Company>

</query>
</response>

136AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



target

target

[target = string]Syntax

(any field)May occur in

Specifies that this field is the target for a command-specific oper-
ation.

Description

Currently only used in the <putdoc> command, to specify this
field as write target for the document link (to be used as document
field or "link" in CRMwin etc.).

Remarks

<mp> attributes
List of attributes for <mp> command.

output

output

[output = string]Syntax

<node-set>May occur in

text, xmlValues

Specifies how the result of the respective operation is to be en-
coded.

Description

See Message Processing.Remarks

137AUREA CONFIDENTIAL

Attributes



test

test

[test = string]Syntax

<if>May occur in

text, xmlValues

An XPath specifying a condition.Description

See Message Processing.Remarks

resolve

resolve

[resolve = Boolean : false]Syntax

<condition>, <cond>May occur in

An indicator of whether the contents of the value attribute are
resolved or not interpreted.

Description

See Message Processing.Remarks

<xquery> attributes
List of attributes for <xquery> command.

name

name

[name = string]Syntax

<xquery>May occur in

The name of the format.Description

noneRemarks

138AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



type

type

[type = string]Syntax

<xquery>May occur in

The type of the format.Description

The type can be specified by format type code (32 or 34, option-
ally prefixed by a hash ‘#’ sign), or by name (Query or Read En-
gine).

Remarks

Custom attributes
Custom attributes are attributes which are not par t of the CRM.interface XML
language.

Such attributes are copied verbatim to the response. This might be useful to transport
custom information over requests and responses, e.g. you could think of using this
feature to implement a kind of session handling.

Custom attributes are supported on <request> element, each command element
(e.g. <update>) and on <field> and <fields> child elements of the <query> command.

Additional custom attributes on "Info Area" level for <match>, <insert>, <import>,
<update> … are supported as well.

See the sample below, where MyCompanyAttribute="MyCompanyAttributeValue" is
set on the <Company> tag of the <import /> command and returned in the response
XML.

Note:  Some attributes are "internal" or "protected" respectively. Internal attributes
are not copied; the usage of protected attributes causes an error.

Note:  Internal attributes: tablename, table, tid, fieldname, field, fields, fid, fnr and
name.

Note:  Protected attributes: text, code, value, label, upd, null and locked.

<?xml version="1.0"?>
<request MyAttribute="MyAttributeValue">

<import MyImportAttribute="MyImportAttributeValue">
<fields>

<Company MyCompanyAttribute="MyCompanyAttributeValue">
<Company matchup="true"> CRM.interface test</Company>
<Synonym/>

139AUREA CONFIDENTIAL

Attributes



</Company>
</fields>

</import>
<query catexkeys="false" MyQueryAttribute="MyQueryAttributeValue">

<tables>
<table tablename="Company"/>

</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="
CRM.interface test"/>

</condition>
<fields tablename="Company" fields="Company,FreeN3"

MyFieldsAttribute="MyFieldsAttributeValue"/>
<fields>

<field tablename="Company" fieldname="FreeC1"
MyFieldAttribute="MyFieldsAttributeValue"/>

</fields>
</query>

</request>
<?xml version="1.0"?>
<response MyAttribute="MyAttributeValue">

<import MyImportAttribute="MyImportAttributeValue">
<return table="FI" tablename="Company" id="429496732500" type="update"/>

</import>
<query catexkeys="false" MyQueryAttribute="MyQueryAttributeValue">

<Company MyCompanyAttribute="MyCompanyAttributeValue" tableshort="FI"
id="429496732500">

<Company MyFieldsAttribute="MyFieldsAttributeValue"> CRM.interface
test</Company>

<FreeC1 MyFieldAttribute="MyFieldsAttributeValue"/>
<FreeN3 MyFieldsAttribute="MyFieldsAttributeValue"/>

</Company>
</query>

</response>

Boolean attributes
Attributes of type Boolean should be specified as true or false.

They can be specified as 0/1 or on/off for backwards compatibility (however, this
usage is deprecated and not recommended). If XML data types are used, then usage
of true/false is mandatory.

Field Attributes
Learn about the field attributes.

The field attributes used in the meta information.

MeaningAttribute

The field has an Aurea CRM input hook.InputHook

The field has an Aurea CRM output hook.OutputHook

The field has an Aurea CRM search condition hook.SearchHook

The field is internal.Invisible

140AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



MeaningAttribute

The field is read-only.Readonly

The field cannot be used as a summed field.NoListSum

The field needs its corresponding company record for decod-
ing.

DecodeFI

The field needs its corresponding person record for decoding.DecodeKP

The field has a computed default value.AutoLoad

The field is a currency field.Currency

The field is a. Aurea CRM list default field.DefaultList

The field is no list field.NoList

The field is the special private boolean flag.Private

The field is read-only (even for the superuser).NoEdit

The field is of type boolean.Bool

The field is not communicated (via the Aurea CRM commu-
nications module).

NoComm

The field is not time-stamped when modified.NoTimestamp

The field contains a reference to a document (stored in tables
D1 or D2).

Document

The field is a required field (and must be filled on creation).Required

The field is the special lock selection flag.LockSelection

The field is the special lock activity flag.LockActivity

The field contains an email address.Email

The field is from a previous version and not used anymore.Obsolete

141AUREA CONFIDENTIAL

Attributes



MeaningAttribute

The field contains a tenant number.Tenant

The field has no business logic attached (and never have)
and can be freely used.

Free

The field contains a rep.Rep

The field contains a rep group.Group

The field contains a resource.Resource

The field contains an internet address.Hyperlink

The field contains the station number of the primary key.StatNo

The field contains the sequence number of the primary key.SeqNo

The field contains a rep hierarchy code.HierarchyCode

Catservice Attribute
Catservice attribute is used to import catalog values using CRM.Interface.

catnew

[catservice = Boolean : false]Syntax

<import>May occur in

An indicator of whether the import command should run in
the catalog service (maintainence) mode.

Description

If this attribute is set to "true" and the import concerns the KA table, then the "normal"
import is intercepted by the catalog maintainence functionality.

Note: Text must be provided in the base language.

Note:  Deletion of catalog values is not supported by the interface catalog service
functionality, but it is possible using service module.

Example importing a new catalog value (catservice = true)

142AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



This example illustrates the import of a new catalog value in both the base language
(100, German) and an additional language (200, English). The response contains
the catalog maintainence Ids and the particular mode (inser t, update).

<Request>
<import catservice = "true" dateformatin = "ymd">

<fields>
<Catalog>

<Index>61</Index>
<ExtKey>FI-FREE3-2</ExtKey>
<Text>FI free3 2</ExtKey>
<Lang>100</Lang>

</Catalog>
<Catalog>

<Index>61</Index>
<ExtKey>FI-FREE3-2</ExtKey>
<Text>FI free3 English</ExtKey>
<Lang>200</Lang>

</Catalog>
</fields>

</Request>

Miscellaneous topics
This topic has some useful miscellaneous information.

Shadow User
CRM.interface uses a technical user – by default the WWW user – to access Aurea
CRM if no login context is provided.

Use update.Users.exe – which is installed in the installation of interface - to
create or modify the users.xml file. Because users.xml contains the usernames
and passwords of a CRM user, it is highly recommend to encrypt the contents of
the file via the option "Use Xml Encryption".

Authentication
Authentication can be done in two ways: via user and password (in clear text) or
via an encrypted token.

Naturally, clear text authentication is recommended to be used only in a secure
environment (e.g. when the XML requests are transported over HTTPS).

Plain text authentication (login)

Specified using the user and pwd attributes. The pwd attribute is optional and can
be omitted when the login does not require a password.

Plain text authentication (single sign-in)

Specified using the domain and user attributes. This is mostly done when using
HTTP authorization, where the successful HTTP authorization is carried over into
the XML request as single sign-in.

143AUREA CONFIDENTIAL

Miscellaneous topics



Encrypted authentication

Specified using the auth attribute. A suitable token can be generated programmati-
cally using the update.lib.dll C# assembly using InterfaceAuthenticationTicket.Cre-
ateTicket7(String username, String password). The tokens are specific to the
CRM.interface they are generated for (i.e. they cannot be shared between the dif-
ferent numbers of CRM.interface), and are intended for one-time only (they have a
very short expiration time by default).

Impersonation
The user that has been granted impersonation rights has the same rights as the
one whom it is impersonating.

Specified using the impersonate attribute.

Impersonation requires, that

• An impersonation user ("master user") is configured in CRM.interface (see figure
below)

• the login matches the specified credentials

• and the impersonate attribute is specified

If all the above listed conditions are fulfilled a login without password check using
the credentials given in the impersonate attribute is performed.

144AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



The impersonate attribute consists of at least one name/value pair (separated by
semicolon), each referencing a login. The first successful login is then used for the
respective request or command. The following list describes the possible values for
the name part:

• user: the login name (as specified in the user attribute in Authentication)

• rep: the name of the associated rep (table RepUser/ID, field Name/3)

• email: the email address of the associated rep (table RepUser/ID, field E-mail1/27)

Example: (the value of the auth attribute is omitted for brevity)
<requestauth="…"impersonate="user=USERNAME;rep=RepUserName;email=email@mail.com">

<!-- command -->
</request>

Referencing a list of fields
Learn how to reference a list of fields.

If the list star ts with "regex:", the remainder is treated as a regular expression that
is evaluated against all fields of the referenced table. Otherwise, it is treated as a
comma-separated list of fieldnames, with two possible wildcards:

• "*": all fields of that table, excluding vir tual fields

• "**": all fields of that table, including vir tual fields

For a list of field types, see FieldTypes and Categories on page 165.

Example: Reading all "Free" fields of a table (fields which name star t with Free)
<request>

<query>
<tables>

<table tablename="Company"/>
</tables>
<fields tablename="Company" fields="regex:Free.+"/>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="Test"/>
</condition>

</query>
</request>

Formatting Date and Time Values
Comprehensive date and time formatting are supported in CRM.interface.

The supported formatting codes for dateformatout and timeformatout are listed in
the table below.

Note:

dateformatout

solely supports date formatting codes and

timeformatout

145AUREA CONFIDENTIAL

Miscellaneous topics



solely supports time formatting codes. Means that for example you cannot use %a
for formatting a time value via

timeformatout

MeaningAttributes

Abbreviated weekday name%a

Full weekday name%A

Abbreviated month name%b

Full month name%B

Date and time representation appropriate for locale%c

Day of month as decimal number (01 – 31)%d

Hour in 24-hour format (00 – 23)%H

Hour in 12-hour format (01 – 12)%I

Day of year as decimal number (001 – 366)%j

Month as decimal number (01 – 12)%m

Minute as decimal number (00 – 59)%M

Current locale's A.M./P.M. indicator for 12-hour clock%p

Second as decimal number (00 – 59)%S

Week of year as decimal number, with Sunday as first day
of week (00 – 53)

%U

Weekday as decimal number (0 – 6; Sunday is 0)%w

Week of year as decimal number, with Monday as first day
of week (00 – 53)

%W

Date representation for current locale%x

146AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



MeaningAttributes

Time representation for current locale%X

Year without century, as decimal number (00 – 99)%y

Year with century, as decimal number%Y

Either the time-zone name or time zone abbreviation, depend-
ing on registry settings; no characters if time zone is unknown

%z, %Z

Percent sign%%

Examples:

1975-08-15%Y-%m-%d

15.08.1975%d.%m.%Y

08/17/75%m/%d/%y

Note: The year has to be first or last, and the three components can optionally be
separated by a single character (both separators must be the same). Day and month
are always expressed in two digits.

Formatting Time Values

See Formatting Time Values.

Matchup
A record matchup occurs when processing <import> or <matchup> commands.

The <import> command uses the matchup logic to decide whether the record should
be inserted or updated, whereas the <matchup>command returns possible matches
for the given record data. The <matchup> command is only defined for the tables
Company/FI and Person/KP.

custom (per field) matchup (only used with <matchup>)

Fields that have the attribute matchup='true' set are used as a filter to query the
respective table. When no records are found, the matchup continues with internal/ex-
ternal matchup. When one record is found, the matchup stops, otherwise it is an
error.

147AUREA CONFIDENTIAL

Miscellaneous topics



internal/external matchup

External matchup is defined as the C# assembly configured in the configuration table.
Internal matchup is defined as the internal import matchup logic as documented in
the business logic manual. If the external matchup is to be used with the <import>
command, the use_configured_matchup='true' attribute has to be specified (as the
<matchup>command is intended to be used for exactly this purpose, it is implied
there and cannot be set/unset). The internal matchup can be forced with both com-
mands by using the force_internal_matchup='true' attribute.

The internal/external matchup can be disabled by setting matchup=’false’ on the
<import> command.

Note:  CRM.interface is capable of three different matchup types.

• CRM.interface internal matchup, referred as internal matchup.

• Aurea CRM core matchup (which is also used in the import module)

• in the truest sense of the word external matchup

Working with "Threads"
For performance reasons, processing of bulk data can be split among a maximum
of 16 worker threads.

If multiple <fields> blocks are used, they are assigned sequentially to the worker
threads, with each worker thread that has finished processing his <fields> block
obtaining the next until no blocks remain. If only one <fields> block is used, its
records are split evenly amongst the threads, with the last thread also processing
the remainder if not evenly divisible.

It is necessary to group dependent records together in blocks to ensure that parent
records (or in general, linked records) are processed before their children (or linked-
to records).

The following could occur in a 3rd party interface where records are always gener-
ated individually:

<import threads="5">
<fields>

<!-- ... -->
<Company>

<!-- ... -->
</Company>
<Person>

<link>
<!-- to preceding Company -->

</link>
<!-- ... -->

</Person>
<!-- ... -->

</fields>
</import>

148AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



If this was the only <fields> block, the split between threads could occur between
the two records (unless the request is carefully tuned), resulting in the possibility
of the Person record to be processed before the Company record. Either more than
one <fields> block has to be used to ensure proper ordering, or the records itself
have to generated dependent of each other:

<import threads="5">
<fields>

<!-- ... -->
<Company>

<!-- ... -->
</Company>
<Person>

<link>
<!-- to preceding Company -->

</link>
<!-- ... -->

</Person>
<!-- ... -->

</fields>
<fields>

<!-- ... -->
</fields>
<!-- ... -->

</import>
<import threads="5">

<fields>
<!-- ... -->
<Company>

<!-- ... -->
<Person>

<!-- implicit link to Company, no explicit <link> needed -->
<!-- ... -->

</Person>
</Company>
<!-- ... -->

</fields>
</import>

Note:  Side note: Theoretically, the very first example could also be imported twice,
after which both records should have been imported successfully. However, this
cannot be whole-heartedly recommended because of processing overhead, possible
indeterminate record state due to triggers, other 3rd party interfaces etc.

Working with transactions
With a transaction you can ensure that either all database modifications of a
command are executed or rolled back in case of an error (so that the command has
no database modifying affect whatsoever).

It is possible to put requests into a transaction context.
<request>

<import transaction="true">
<fields>

<Company>
<Company>update software AG</Company>
<Person>

<Wrong>wrong fieldname</ Wrong >
<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Person>

149AUREA CONFIDENTIAL

Miscellaneous topics



</Company>
</fields>

</import>
</request>

In this sample the company record is NOT inserted due to an error occurring in the
following person record (“wrong fieldname”). In order to ensure a rollback of the
transaction, the attribute transaction has to be set on the <import> element.

The response returns the error and information about the transaction rollback:
<response>

<import transaction="true">
<return table="FI" tablename="Company" id="4294981504" type="insert"/>

<return table="KP" id="0" type="error" func="C_Portal::ProcessImportNode">

<ecode>-10027</ecode>
<etext>Dictionary: Field not found</etext>
<table table="KP" tablename="Person"/>
<field>Wrong</field>

</return>
<return type="error" func="C_Portal::XmlProcessCommand">

<ecode>-10089</ecode>
<etext>Database transaction: Rollback</etext>

</return>
</import>

</response>

It is possible to put the whole request into a transaction context and/or to control
the transaction individually.

If the transaction attribute is set on the request element the behavior is the same
as described above for command elements. All commands are executed in one
transaction.

<request transaction="true">
<putdoc>

<Name>Testdatei.txt</Name>
<Keyword>Putdoc_Test</Keyword>
<rawdata xmlns:dt="urn:schemas-microsoft-com:datatypes"

dt:dt="bin.base64">dGVzdA==</rawdata>
</putdoc>
<import>

<fields>
<Documents>

<links>
<link tablename="Documents" id="$lastRecId"/>

</links>
<Private>false</Private>
<DocClass>Textfile</DocClass>
<Owner>Own RepName</Owner>
<FreeC1>Test</FreeC1>
<!-- … -->

</Documents>
</fields>

</import>
</request>

In this example, if the import fails, the document is not created as well.

Transactions can be star ted and active transactions can be committed or rolled back
explicitly using the <transaction> command. Transactions are star ted with
cmd="begin", and ended with cmd="end" (rollback on error, otherwise commit),
cmd="commit" (explicit commit), or cmd="rollback" (explicit rollback).

<request>
<!-- ... -->

150AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<transaction cmd="begin"/>
<import>

<fields>
<Company>

<Company>update software AG</Company>
<Person>

<Wrong>
wrong fieldname</ Wrong >
<FirstName>John</FirstName>
<LastName>Doe</LastName>

</Person>
</Company>

</fields>
</import>
<!-- ... -->
<transaction cmd="end"/><!—end|commit|rollback -->
<!-- ... -->

</request>

Message Processing
The mp (Message Processing) execution engine provides access to the current
request and response (up to the previous command) using standard XPath queries
in a pseudo document with top-level element <root>, hencefor th called the mp
document.

Whenever an expression (e.g. an XPath from a test or select attribute) is evaluated,
it is done so against the mp document. When processing star ts, the mp document
provides access to the XML request. After processing a command, its response is
available for all successive commands.

CRM.interface includes elements for flow control and expression evaluation that
are loosely based on XSLT, but naturally are implemented separately. All mp com-
mands reside in their own namespace.

<mp:choose>

Provides multiple condition testing in conjunction with the <mp:when> and <mp:oth-
erwise> elements.

<mp:choose />

(no attributes)Attributes

<mp:when> + <mp:otherwise>?Contents

<request>

(any table)

May occur in

noneRemarks

<mp:for-each>

<mp:for-each> allows repeated execution of a command.

151AUREA CONFIDENTIAL

Miscellaneous topics



<mp:for-each>

selectAttributes

(any command)Contents

<request>May occur in

noneRemarks

<mp:if>

Allows conditional XML fragments.

<mp:if />

testAttributes

(any command)

(any field)

Contents

<request>

(any table)

May occur in

noneRemarks

<mp:otherwise>

Provides multiple condition testing in conjunction with the <mp:choose> and <mp:when>
elements.

<mp:otherwise />

(no attributes)Attributes

(any command)

(any field)

Contents

<mp:choose>May occur in

noneRemarks

<mp:value-of>

Provides for expression evaluation, variable resolution, and XPath selection.

152AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<mp:value-of />

eval resolve selectAttributes

(no content)Contents

(any field)

(any mp content)

May occur in

noneRemarks

<mp:when>

Provides multiple condition testing in conjunction with the <mp:choose>and
<mp:otherwise> elements.

<mp:when />

testAttributes

(any command)

(any field)

Contents

<mp:when>May occur in

noneRemarks

Setting context
Learn how to set context.

Description is provided in an upcoming revision of this document.

Built-in variables
Built-in variables are used in places where a record id is needed.

The following variables can be used:

• $firstRecId: the id of the first record of that table that is processed in a query or
import (regardless of occurrence)

• $lastRecId: the id of the last record of that table that is processed in a query or
import (regardless of occurrence)

• $prevRecId: the id of the first record of that table that was processed in the
previous query or import command

153AUREA CONFIDENTIAL

Miscellaneous topics



Example: using variables to update a record that was previously read.
<request>

<query xsdt="true">
<tables>

<table tablename="Company"/>
</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="update
software Ger*"/>

</condition>
<fields tablename="Company" fields="Company"/>

</query>
<query xsdt="true">

<tables>
<table tablename="Company"/>

</tables>
<condition>
<cond tablename="Company" fieldname="Company" op="=" value="update*"/>

</condition>
<fields tablename="Company" fields="Company"/>

</query>
<import>

<fields>
<Company recId="$XXX">

<!-- fields to be updated -->
</Company>

</fields>
</import>

</request>

When $XXX are updated:

• $firstRecId: update software Germany Gmbh

• $lastRecId: update software (Switzerland) GmbH

• $prevRecId: update software AG

<response>
<query xsdt="true">

<Company table="FI" id="296352743973" recId="x0000004500000225">
<Company>update software Germany GmbH</Company>

</Company>
</query>
<query xsdt="true">

<Company table="FI" id="296352743952" recId="x0000004500000210">
<Company>update software AG</Company>

</Company>
<Company table="FI" id="296352743973" recId="x0000004500000225">

<Company>update software Germany GmbH</Company>
</Company>
<Company table="FI" id="296352743974" recId="x0000004500000226">

<Company>update software (Switzerland) GmbH</Company>
</Company>

</query>
<import>

<!-- ... -->
</import>

</response>

154AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



Flow control - Conditional execution
The expression in the test attribute of the <mp:if> or <mp:when> element is evaluated
and the result converted to a boolean value. If the result is true, the content is
processed else it is left unprocessed.

When alternative(s) are needed, the <mp:when> elements describe one or more al-
ternatives to be chosen by the <mp:choose> element, the (optional) default alternative
is described by the <mp:otherwise> element. For simple conditional testing with no
alternative(s), use the <mp:if> element.

Example: depending on the query result, different processing can be performed.
<request xmlns:mp="http://www.update.com/xml/core/mp">

<query>
<tables>

<table tablename="Company"/>
</tables>
<condition>
<cond tablename="Company" fieldname="Company" op="=" value="update*"/>

</condition>
</query>
<mp:choose>

<mp:when test="count(/root/response/query[1]/Company)>1">
<!-- multiple choice -->

</mp:when>
<mp:when test="count(/root/response/query[1]/Company)=1">

<!-- unique match -->
</mp:when>
<mp:otherwise>

<!-- not found -->
</mp:otherwise>

</mp:choose>
</request>

Flow control – Loops using <mp:for-each>
The select attribute of the <mp:for-each> command is evaluated and the contents
processed with the result of the select passed as context.

This allows for more complex operations. For example, a "simple" update of the
records could also be done using the <update> command) on multiple records in a
single request.

Expression evaluation using <mp:value-of>
The <mp:value-of> element is used to reference into the mp document.

Three attributes control the behavior:

select

The expression is evaluated and the results are converted to a string (as by a call
to the string() XSLT function). A node-set is converted to a string by inser ting the
string value of the first node in the set.

155AUREA CONFIDENTIAL

Miscellaneous topics



Example: copy field contents from one field to another (here, the contents of FreeC1
are copied to FreeC2).

<request xmlns:mp="http://www.update.com/xml/core/mp">
<query>

<tables>
<table tablename="Company"/>

</tables>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="update
software AG"/>

</condition>
<fields tablename="Company" fields="Company,FreeC1"/>

</query>
<import>

<fields>
<Company recId="$lastRecId">

<FreeC2>
<mp:value-of select="/root/response/query[1]/Company/FreeC1"/>

</FreeC2>
</Company>

</fields>
</import>

</request>

eval

Due to the specific implementation, expressions that do not select nodes (as per
select above), have to be treated differently. An example is calling XSLT functions.

Example: Negating a Boolean value and incrementing a number (this assumes that
the record already exists)

<request xmlns:mp="http://www.update.com/xml/core/mp">
<query xsdt="true">

<tables>
<table tablename="ItemMaster"/>

</tables>
<condition>

<cond tablename="ItemMaster" fieldname="ItemNo" op="="
value="mp_value-of_eval"/>

</condition>
<fields tablename="ItemMaster" fields="ItemNo,Available,FreeN1"/>

</query>
<mp:for-each select="/root/response/query[1]/ItemMaster">

<import>
<fields>

<ItemMaster recId="@recId">
<Available>

<mp:value-of eval="not(Available='true')"/>
</Available>
<FreeN1>

<mp:value-of eval="number(FreeN1)+1"/>
</FreeN1>

</ItemMaster>
</fields>

</import>
</mp:for-each>
<query xsdt="true">

<tables>
<table tablename="ItemMaster"/>

</tables>
<condition>

<cond tablename="ItemMaster" fieldname="ItemNo" op="="
value="mp_value-of_eval"/>

</condition>
<fields tablename="ItemMaster" fields="ItemNo,Available,FreeN1"/>

</query>
</request>
<response xmlns:mp="http://www.update.com/xml/core/mp">

156AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



<query xsdt="true">
<ItemMaster table="AR" id="12" recId="x000000000000000c">

<ItemNo>mp_value-of_eval</ItemNo>
<Available>false</Available>
<FreeN1>20</FreeN1>

</ItemMaster>
</query>
<import>

<return table="AR" tablename="ItemMaster" id="12"
recId="x000000000000000c" type="update"/>

</import>
<query xsdt="true">

<ItemMaster table="AR" id="12" recId="x000000000000000c">
<ItemNo>mp_value-of_eval</ItemNo>
<Available>true</Available>
<FreeN1>21</FreeN1>

</ItemMaster>
</query>

</response>

Additionally you can call a script in <mp:value-of eval>.

Note: The script call must be prefixed by implements-prefix in which the script is
implemented, e.g.<mp:value-ofeval='js:add(number(/root/response/query[1]/Com-
pany/FreeN1),666)'/>.

Note:  the script must be located in the <msxsl:script> section of the style sheet
(<msxsl:script language='JScript' implements-prefix='js'></msxsl:script>)

The example below illustrates how to call a script (js:add) in <mp:value-of eval>
and shows a simple implementation of this script in the style sheet.

<?xml version='1.0'?>
<request xmlns:mp='http://www.update.com/xml/core/mp'

log='log/log_mp_script.xml'>
<import>

<fields>
<Company>

<Company matchup='true'>mp_script</Company>
<FreeN1>69</FreeN1>

</Company>
</fields>

</import>
<query>

<tables>
<table tablename='Company'/>

</tables>
<fields tablename='Company'

fields='CoGrp,CoNo,Company,FreeN1,FreeN2,FreeN3,Text'/>
<condition>

<cond table='FI' fieldname='Company' op='=' value='mp_script'/>
</condition>

</query>
<import>

<fields>
<Company>

<Company matchup='true'>mp_script</Company>
<FreeN2>

<mp:value-of
eval='js:add(number(/root/response/query[1]/Company/FreeN1),666)'/>

</FreeN2>
<FreeN3>

<mp:value-of
resolve='{eval:js:add(number(/root/response/query[1]/Company/FreeN1),666)}'/>

</FreeN3>
<Text>

157AUREA CONFIDENTIAL

Miscellaneous topics



<mp:value-of
resolve='js={eval:js:add(number(/root/response/query[1]/Company/FreeN1),666)}'/>

</Text>
</Company>

</fields>
</import>
<query>

<tables>
<table tablename='Company'/>

</tables>
<fields tablename='Company'

fields='CoGrp,CoNo,Company,FreeN1,FreeN2,FreeN3,Text'/>
<condition>

<cond table='FI' fieldname='Company' op='=' value='mp_script'/>
</condition>

</query>
</request>

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'

xmlns:msxsl='urn:schemas-microsoft-com:xslt' xmlns:js='urn:js'
exclude-result-prefixes='msxsl js'>
<xsl:output method='text'/>
<xsl:param name='node_name'>root</xsl:param>
<xsl:template match='test'>
<xsl:value-of select='js:add(number(.),1)'/>
</xsl:template>
<msxsl:script language='JScript' implements-prefix='js'>
<![CDATA[
function add(n1,n2)
{
return n1+n2;
}
]]>
</msxsl:script>
</xsl:stylesheet>

resolve

The expression is parsed and scanned for par ts that are enclosed in curly braces.
Currently, these parts can star t with a dollar sign (in which case it is a variable), or
be an identifier followed by a colon and an expression (in which case it is a selector).

Built-in variables:

• $userId: the internal id of the current request

• $userName: the name of the current login user

• $repId: the id of the current login user/rep

• $repName: the name of the current login rep

• $groupId: the group id of the current login rep

• $groupName: the group name of the current login rep

• $date: the current date

• $time: the current time

• $random: a random number in the range from 0-32767

Built-in selectors:

• select: see evaluation of select above

• eval: see evaluation of eval above

158AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



• node-set: select a complete XML tree (expression is evaluated as in select, but
does not select only the text content, but the whole XML tree)

• value-set: same as select

Example: usage in conditions – the value attribute is resolved as described above
on all elements where resolve=”true” on itself or any parent condition element.

<request xmlns:mp="http://www.update.com/xml/core/mp">
<!-- read a company -->
<query>

<tables>
<table tablename="Company"/>

</tables>
<!-- condition or link -->
<fields tablename="Company" fields="Company,Synonym,Country"/>

</query>
<!-- read all companies with the same country and synonym -->
<query>

<tables>
<table tablename="Company"/>

</tables>
<condition resolve="true">

<lop value="and">
<cond tablename="Company" fieldname="Country" op="="

value="{select:/root/response/query[1]/Company/Country}"/>
<cond tablename="Company" fieldname="Synonym" op="="

value="{select:/root/response/query[1]/Company/Synonym}"/>
</lop>

</condition>
<fields tablename="Company" fields="Company,Synonym,Country"/>

</query>
</request>

List of flags that control processing
Learn about the list of flags that control processing.

Full description is provided with an upcoming revision of this document.

Returning record data
When data is imported, it is sometimes desirable not to return the status (inser t,
update, match) but the record itself. This can be done manually with a <query>
following the <import> or using the "readback" feature.

The "readback" attribute on the <import> element specifies a reference to the
fields.xml in the xml/ folder. This file is not present by default. The syntax is the
same as the <form> elements in the forms.xml used by the groupware Server
part. The value of the "readback" attribute of an <import> element corresponds to
the "type" attribute of the <form> element in the fields.xml file. The record is
then returned with the fields specified under the respective <table> element, just
like a normal <query>.

Document encryption
Learn about document encryption.

Full description is provided with an upcoming revision of this document.

159AUREA CONFIDENTIAL

Miscellaneous topics



Recommended settings
You need to perform the settings recommended in this topic.

If the XML response is used for data exchange, the xsdt='true' attribute should be
set on the <query> element. This enables the use of XML Schema data types that
are culture-independent. If the response is used for presentation purposes, it can
be useful to also use xsdt if for example dates or numbers are formatted in an XSLT
stylesheets. If the response is only transformed to HTML with no custom format-
ting/calculation, then the culture-variant output (with no xsdt attribute, or xs-
dt='false') might be preferable.

Cursor Flags
Here you can learn about the cursor flags.

Flags to be used with the flags attribute:

Meaning
Flag (dec)Flag

do not check rights for records of this table320x00000020

No longer supported.

See 0x00004000 below!

640x00000040

return records of this table as "summed" (only
applicable for 1:N relations)

1280x00000080

WITH: parent record is only returned when at
least one record exists

2560x00000100

EXISTS: records of this table are not returned
(used in combination with WITH)

5120x00000200

NOT EXISTS: like above10240x00000400

160AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



Meaning
Flag (dec)Flag

OPTIONAL20480x00000800

also read records marked as deleted.

Please note: for Aurea CRM interface Service
Pack 6 and older this flag (allowing for reading
also records marked as deleted) is 0x00000040
(64)!

CRM.interface0x00004000

Aurea CRM interface SP7+ 0x00004000

Aurea CRM interface SP6 0x00000040

163840x00004000

Example: companies and persons are read, companies without persons are not re-
turned

<request>
<query>

<tables>
<table tablename="Company">

<table tablename="Person" flags="256"/>
</table>

</tables>
<fields tablename="Company" fields="Company"/>
<fields tablename="Person" fieldname="LastName,FirstName"/>
<condition>
<cond tablename="Company" fieldname="Company" op="=" value="update*"/>

</condition>
</query>

</request>

Example: return the sum of a field (e.g. costs) for all contact records for one com-
pany

<request>
<query>

<tables>
<table tablename="Company">

<table tablename="Contact" flags="128"/>
</table>

</tables>
<fields tablename="Company" fields="Company"/>
<fields tablename="Contact" fields="Costs"/>
<condition>

<cond tablename="Company" fieldname="Company" op="=" value="update
software AG"/>

</condition>
</query>

</request>

Note:  when sum fields are used, only one contact record is returned (and only
fields that can be summed are considered).

161AUREA CONFIDENTIAL

Miscellaneous topics



mmFlags XML Schema data type
The mmFlags data type represents a 32-bit unsigned integer used to store up to 32
Boolean flags.

It can be specified as hexadecimal notation if prefixed with an 'x' character, otherwise
it is interpreted in decimal notation.

162AUREA CONFIDENTIAL

Chapter 4: XML Syntax Reference



5
Other Functions and features
Learn about the other interesting features and functions of CRM.interface.

How to remove namespaces
Learn how to remove namespaces.

CRM.interface requests have to be namespace-neutral. Requests containing
namespaces are therefore ignored:

<Biztalk:request xmlns:Biztalk="urn:COMPANYMAME/CRM/U7COMPANYIN">
<status/>

</Biztalk:request>
<Biztalk:request xmlns:Biztalk="urn:COMPANYMAME/CRM/U7COMPANYIN">

<status/>
</Biztalk:request>

In case a client uses namespaces in its requests you may remove these namespaces
via adoption of the stylesheets in your command lists.

• modify your in.xslt (search for "Biztalk" to find differences to the out-of-the-box
stylesheet) as sketched in the sample below.

• add an additional style sheet (in this sample namespace_remover.xslt) to
your command list. This new style sheet might look like the sketch below.

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt"
xmlns:var="urn:var"
xmlns:user="urn:user"
xmlns:syncml="SYNCML:SYNCML1.1"
xmlns:Biztalk='urn: COMPANYMAME/CRM/U7COMPANYIN'
exclude-result-prefixes="msxsl var user syncml Biztalk"
version="1.0">

<xsl:output method="xml" omit-xml-declaration="yes"/>
<xsl:template match="/request|/syncml:SyncML">

<root>
<com obj='$preload' func='XMLProcess'>

<par val='$xmldom'/>
</com>

</root>
</xsl:template>
<xsl:template match="/Biztalk:request">

<root>
<xslt>namespace_remover.xslt</xslt>
<com obj='$preload' func='XMLProcess'>

<par val='$xmldom'/>
</com>

</root>
</xsl:template>
<!-- ... -->

</xsl:stylesheet>

163AUREA CONFIDENTIAL



Field output formats
Learn about the field output format flags.

The field output format flags used in the meta information.

MeaningAttribute

The field is formatted with digit grouping symbols (eg.
1,234.56 instead of 1234.56).

DigitGrouping

The field uses one decimal place for precision.OneDecimalPlaces

The field uses no decimal place for precision.NoDecimalPlace

The field contains a percentage.Percent

The field is signed.Signed

The field is numeric and should be formatted as “0” instead
of an empty string.

DisplayEmpty

The field uses three decimal places for precision.ThreeDecimalPlaces

The field is formatted with leading zeroes up to the maxi-
mum length.

LeadingZeroes

The field contains an amount and is formatted likewise
(eg. 69,- instead of 69).

Amount

The field uses four decimal places for precision.FourDecimalPlaces

The field uses five decimal places for precision.FiveDecimalPlaces

The field has a clickable selection attached.Selectable

The field uses seven decimal places for precision.SevenDecimalPlaces

The field is a date with day, month and two-digit year.DDMMYY

The field is a date with day and month.DDMM

164AUREA CONFIDENTIAL

Chapter 5: Other Functions and features



MeaningAttribute

The field is a date with month and four-digit year.MMYYYY

The field is a date with month and two-digit year.MMYY

The field is right-aligned.RightAligned

The field is centered.Centered

The field is left-aligned.LeftAligned

The field uses six decimal places for precision.SixDecimalPlaces

The field is a character field, but contains only digits.OnlyDigits

The field is a time field with second precision.TimeWithSeconds

The field is a time field with millisecond precision.TimeWithMilliseconds

The field is formatting using XML schema data types.XmlSchema

FieldTypes and Categories
Fields are classified into type and categories that are used in various places.

Below are the types and categories:

165AUREA CONFIDENTIAL

FieldTypes and Categories



Field types

MeaningType charac-
ter

Character (String)C

Catalog (also called dynamic catalog)K

Fixed catalog (also called static catalog)X

Integer (32-bit or 64-bit)L

Integer (16-bit)S

DateD

TimeT

Float (32-bit or 64-bit)F

BooleanB

Vir tualZ

Field categories

The field category is determined from the field id.

RemarksFin-
ish

StartCategory

9990BaseFields

41994000CoreFields

43004200UniqueFields

currently not usedVir tualFields

69995000GdmUpdateFields

99997000GdmCustomer-
Fields

166AUREA CONFIDENTIAL

Chapter 5: Other Functions and features



RemarksFin-
ish

StartCategory

1799910000GdmPartnerFields

1899918000SqlCoreFields

2299919000SqlVarFields

25000CustomFields

1000000GeneratedFields

GdmUpdateFields+GdmCustomerFields+Gdm-
PartnerFields

GdmFields

Text categories

The text category determines the origin of the fieldname.

RemarksCategory

language-dll (eg. bb_ger.dll, bc_eng.dll, fs_nld.dll)CoreTexts

built-in dictionary (contained in the datamodel-dll)DefaultTexts

custom dictionary (dictionary.xml in the xml/ folder)CustomTexts

MissingTexts

AllTextFlags

Error codes
Use the list of error codes for troubleshooting purpose.

DescriptionDefinefCode

User is already logged on.ALREADY_LOGGED_ON-1

Registry not properly configured.
Register component!

READ_REGISTRY-2

167AUREA CONFIDENTIAL

Error codes



DescriptionDefinefCode

Init of session failed.INIT_SESSION-3

Database unavailable! Check all
DLL's present and ODBC config.

MMINIT1-4

Default ('WWW') user not added to
DB!

MMINIT2-5

Check DSN configuration and securi-
ty settings for Windows User!

DBINIT-6

Init default values failedINITDEFAULT-7

Could not open file.OPENFILES-8

Initialization of user failed (check
formats and rights).

INITUSER-9

Session not initialized (no GlobalLo-
gon())

NOTINITIALIZED-10

No session pool available.SESSIONPOOL-11

No session from user pool available.USERPOOL-12

Invalid Login. User/Password un-
known!

LOGIN-13

Connection is locked!CONNECTION_LOCKED-14

Connection cannot be initialized!CONNECTION_INIT-15

No free connections!ALL_CONNECTIONS_USED-16

Incorrect password!PASSWORD-17

Module locked. User not allowed ac-
cess to this module.

MODULE_RIGHT-18

User has to change password!PASSWORDEXPIRED-19

168AUREA CONFIDENTIAL

Chapter 5: Other Functions and features



DescriptionDefinefCode

Invalid cursorID! cursor already
closed?

UNDEFINED_CURSOR_ID-20

Invalid set length (key)WRONG_CURSOR_SETLEN-21

Buffer too small.BUFFER_TO_SMALL-22

The requested object/information is
not found.

READPACKSTART-23

The requested object/information is
not found.

NOTFOUND-24

General "access denied" error-codeACCESSDENIED-25

Database has to be migrated.MIGRATE_FIRST-26

Record to be updated could not be
found

UPDREC_NOT_FOUND-30

No rights to update record!UPD_RIGHT-31

No permission to change this field!FIELDRIGHT-32

Invalid key value! Catalog value
deleted?

INVALID_KEY_FIELD-33

Failed to load rights-format.LOAD_RIGHT_PROFILE-35

Failed to load tenant's right-format.LOAD_MRIGHT_PROFILE-36

Not a blob or decompression-failure.BAD_BLOB-40

Invalid parameter.BAD_PARAM-50

Cursor not initialized.INIT_CURSOR-51

Super user locked the systemSYSTEM_LOCKED_MANUAL-60

169AUREA CONFIDENTIAL

Error codes



DescriptionDefinefCode

System is locked because of current
date

SYSTEM_LOCKED_DATE-61

Daily system lock is activeSYSTEM_LOCKED_DAILY-62

The user is blocked by blocking
mechanism

USER_BLOCKED-63

No right for concurrent logon of user.USER_NOCONCURACCOUNT-64

Maximum number of users for logon
reached.

ALL_LOGGEDON-65

Only one login per module allowed
(cockpit).

EXCLUSIVE_LOGON-66

I/O-Error accessing XML format.XML_FMTIO_ERROR-70

Format record is not found.XML_FMTIO_NOTFOUND-71

Unsupported XML format-type.XML_FMTIO_INVALIDTYPE-72

Error reading XML-format. Most
likely the format is invalid!

XML_READ_ERROR-73

XML library (mmxmlmssi/or8i.dll)
could not be loaded.

XML_INIT_ERROR-74

A field referenced an unexpected in-
fo area. The contents of the XML are
invalid.

XML_DIFFERENT_TABLE-75

XML to read is not valid.XML_INVALID-76

Format for default values is empty
and therefore invalid.

XML_EMPTY_FORMAT-77

No right to import format (usually
data model format).

XML_NORIGHT-78

170AUREA CONFIDENTIAL

Chapter 5: Other Functions and features



DescriptionDefinefCode

Numeric range error.RRC_NUMERIC_ERROR-80

Invalid value.RRC_VALUE_ERROR-81

Range error.RRC_RANGE_ERROR-82

Unknown exception occurredEXCEPTION-99

Memory error: system is low on
memory.

MEMORY-100

Invalid table. Usually causes by XML
import of formats

TABLE-101

Invalid field. Usually causes by XML
import of formats

INVALID_FIELD-102

Invalid catalog. Usually causes by
XML import of formats

INVALID_CATALOG-103

Invalid language. Usually causes by
XML import of formats

INVALID_LANGUAGE-104

Invalid rep. Usually causes by XML
import of formats

INVALID_REP-105

New password is to short (password
rules)

PASSWORD_TOOSHORT-106

Password must contain digits (pass-
word rules)

PASSWORD_MISSINGDIGITS-107

Password must contain alphabetic
characters (password rules)

PASSWORD_MISSINGALPHA-108

Password must not contain user
name (password rules)

PASSWORD_CONTAINSUSERNAME-109

The password is contained in the
password history (password rules).

PASSWORD_INHISTORY-110

171AUREA CONFIDENTIAL

Error codes



DescriptionDefinefCode

The password must contain upper-
and lowercase characters (password
rules).

PASSWORD_MISSINGUPPERLOW-
ER

-111

The password is in blacklist (pass-
word rules).

PASSWORD_INBLACKLIST-112

The password must not share x
characters with previous password
(password rules).

PASSWORD_NOCYCLE-113

Copy record: copy offer to order and
destination record exists already
(BTB only).

COPYRECORD_ORDER_AL-
READY_EXISTS

-120

Copy record: copy order to installed
base and destination record exists
already (BTB only).

COPYRECORD_INSTALLED-
BASE_ALREADY_EXISTS

-121

Copy record: destination record exist
already (BTB only).

COPYRECORD_TARGET_AL-
READY_EXISTS

-122

Copy record: copy offer to order and
offer state equals 'order' (BTB only).

COPYRECORD_OF-
FER_IS_IN_STATE_ORDER

-123

Copy record: missing must field (BTB
only).

COPYRECORD_MISS-
ING_MUST_FIELD

-124

Dispatching dashboard: could not
read configuration entry.

TICKETREPS_CONFIG_NAME-127

Dispatching dashboard: could not
read configuration format.

TICKETREPS_READ_CONFIG_DATA-128

Dispatching dashboard: configuration
format is invalid.

TICKETREPS_INVALID_FORMAT-130

Dispatching dashboard: could not
copy conditions.

TICKETREPS_DUP_SUB-132

172AUREA CONFIDENTIAL

Chapter 5: Other Functions and features



DescriptionDefinefCode

Dispatching dashboard: error star ting
read engine.

TICKETREPS_DB_READ-133

Configuration table: invalid sec-
tion/option combination.

CONFIG_INVALID-150

Configuration table: invalid format
name.

CONFIG_INVALIDFORMAT-151

Error encrypting document.CRYPTO_EXCEPTION-158

Generic SQL error.NUL_SQLERROR-800

No cursor available.NUL_CURSOR-801

An attempt to establish a database
connection failed and the calling ap-
plication should exit.

NUL_CONN_EXIT-810

An attempt to establish a database
connection failed.

NUL_CONN_ERROR-811

The database connection could not
be reopened.

NUL_CONN_REOPEN-812

An invalid database connection has
been specified.

NUL_CONN_BAD-813

An invalid cursor has been specified.NUL_CURS_ERROR-815

A cursor has already been locked.NUL_CURS_ALREADY_LOCK-816

The read is successful, but the
record is marked as deleted.

NUL_READ_DELETED-900

The read operation has been abort-
ed.

NUL_READ_ABORT-901

GetTable failed on reading a record.NUL_READ_GETTABLE_FAILED-902

173AUREA CONFIDENTIAL

Error codes



DescriptionDefinefCode

GetMutex failed on reading a record.NUL_READ_GETMUTEX_FAILED-903

GetMemory failed on reading a
record.

NUL_READ_OUTOFMEMORY-904

Record modification error.NUL-1000

Record not found.NUL_NOTFOUND-1001

Record already exists.NUL_DUPLICATE-1002

Unknown read type.NUL_ART-1004

The record has been modified.NUL_RECCHANGED-1008

File cannot be opened!NUL_OPEN-1012

Unable to complete write.
Rights/must field problem.

NUL_CONTINUE_EDIT-1013

Record invalid! Record may have
been deleted.

NUL_INCOMPLETE-1016

The number cycler is full.NUL_NOMOREIDS-1017

A company could not be deleted be-
cause related persons still exist.

NUL_PERSONS-1018

OTC Serial entry: exceeds contin-
gent.

NUL_EXCEEDS_CONTINGENT-1019

Access to the info area has been
denied.

NUL_RIGHT_DENY-1020

Access to the info area has been
denied by a conditional right.

NUL_RIGHT_CONDITIONAL-1021

Access to the info area has been
denied by a top-down right.

NUL_RIGHT_TOPDOWN-1022

174AUREA CONFIDENTIAL

Chapter 5: Other Functions and features



DescriptionDefinefCode

Access to the info area has been
denied by a bottom-up right.

NUL_RIGHT_BOTTOMUP-1023

Access to the info area has been
denied because a mandatory field
contained no data.

NUL_RIGHT_MUST-1024

Record could not be saved because
date constraints are not fulfilled.

NUL_INV_TIMESPAN-1025

Recurrence record: no contact with
current settings possible (daily,
weekly)

NUL_WH_NO_TERMIN_POSSIBLE-1160

Recurrence record: RecurrenceCount
or EndDate missing

NUL_WH_NO_DATE-1161

Recurrence record: EndDate before
star t date of parent contact

NUL_WH_STARTENDDATE-1162

Recurrence record: period missing
(daily:DailyRecurrence, weekly:Week-
lyRecurrence, monthly:MonthlyRecur-
rence, yearly:YearlyRecurrence)

NUL_WH_NO_PERIOD-1163

Recurrence record: weekday missing
(weekly[16-22]:Monday to Sunday)

NUL_WH_NO_WEEKDAY-1164

Recurrence record: Month missing
(yearly[28])

NUL_WH_NO_MONTH-1165

Recurrence record: invalid weekday
or Saturday or Sunday selected and
Weekend = false (monthly[26]:Month-
lyRecurrenceWeekday , year-
ly[31]:YearlyRecurrenceWeekday)

NUL_WH_INVALID_WEEKDAY-1166

Recurrence record: day of month is
missing (monthly[24]:MonthlyRecur-
renceMonthday, yearly[29]:YearlyRe-
currenceWeekday)

NUL_WH_NO_MONTHDAY-1167

175AUREA CONFIDENTIAL

Error codes



DescriptionDefinefCode

Recurrence record: Record must not
be changed on a station different
from where it is created

NUL_WH_WRONG_STNO-1168

Recurrence record: Appointment
record does not contain a date

NUL_WH_NO_CONTACTDATE-1169

Feature not supported!NOT_SUPPORTED-1100

Update US record: rep type must be
rep

NUL_US_ID-2001

Update US record: invalid user nameNUL_US_USER-2002

Update US record: invalid alias nameNUL_US_USER_ALIAS-2003

Update US record: invalid passwordNUL_US_PW-2004

Update US record: user name may
not be changed

NUL_US_USER_CHG-2005

Update ES record: rep type must be
rep

NUL_ES_USER_UID-2011

Update ES record: pwGlobal only if
snoMaster != 0

NUL_ES_PWGLOBAL-2012

Update ES record: field can only be
changed by snoMaster

NUL_ES_ONLY_MASTER-2013

Update ES record: invalid user nameNUL_ES_USER-2014

Update ES record: invalid alias nameNUL_ES_ALIAS-2015

Update ES record: invalid passwordNUL_ES_PW-2016

No access to table because of rights
(code is 1000 + table ID)

RRC_TABLE_RIGHT-10000

176AUREA CONFIDENTIAL

Chapter 5: Other Functions and features


	Table of Contents
	Notices
	Preface
	About this documentation
	Notation conventions
	Aurea global support

	Introduction
	Architecture Overview & Brief Description
	CRM.interface – Some Technical Details
	What's new
	Main differences between CRM.interface and update.seven interface

	Installation
	Setup Wizard
	Post installation steps
	Configuration of CRM.interface
	Logging

	Integration Hub
	CRM.interface Integration Server
	CRM.interface integration client
	The Synchronize Workflow
	How to integrate with a 3rd party system which requires a login
	Logging
	Invoking integration client via program call trigger
	Excursion-invoking CRM.interface via URL parameter


	XML Syntax Reference
	Commands
	Common Elements
	Attributes
	Request Attributes
	Session attributes
	Common Attributes
	Command attributes
	<cond> attributes
	<dictionary> attributes
	<getcat> attributes
	<getdoc> attributes
	<import> attributes
	<insert> attributes
	<link> attributes
	<metainfo> attributes
	<merge> attributes
	<putdoc> attributes
	<query> attributes
	<refresh> attributes
	<row_export> and <row_import> attributes
	<sort> attributes
	<sleep> attributes
	<status> attributes
	<table> attributes
	<transaction> attributes
	Other attributes
	<mp> attributes
	<xquery> attributes
	Custom attributes
	Boolean attributes
	Field Attributes
	Catservice Attribute

	Miscellaneous topics
	Shadow User
	Authentication
	Impersonation
	Referencing a list of fields
	Formatting Date and Time Values
	Matchup
	Working with "Threads"
	Working with transactions
	Message Processing
	Setting context
	Built-in variables
	Flow control - Conditional execution
	Flow control – Loops using <mp:for-each>
	Expression evaluation using <mp:value-of>

	List of flags that control processing
	Returning record data
	Document encryption
	Recommended settings
	Cursor Flags
	mmFlags XML Schema data type


	Other Functions and features
	How to remove namespaces
	Field output formats
	FieldTypes and Categories
	Error codes


